期刊文献+

基于机器学习的烟雾检测算法去除固定干扰 被引量:1

Remove of Fix interference Based on Machine Learning in Smoke Detection
下载PDF
导出
摘要 烟雾是早期火灾最为突出的视觉表现,因此检测火灾烟雾在日常防火应用中具有重要的意义;针对目前视频烟雾检测算法中误报率高,适应性差等特点,在实施基本烟雾检测算法并在其基础上提出基于机器学习的视频烟雾去干扰方法,能很大程度上去除固定干扰物的干扰,提高了烟雾识别的正确率;实验证明,该算法可以较好、较快地检测出烟雾,并做出早期的预警工作,且具有检测精确等优点,很方便在现实中推广使用。 Smoke is the most prominent of the fire detect, so detect the smoke has an important significance in daily lives. In view of the current smoke detection has the high error rate and poor adaptability. Therefore, this paper presents Remove the fix interference which based on machine learning in the smoke detection and it can remove the fixed interference as soon as possible, and it can improve the correct rate of smoke recognition. Experiments show that the algorithm has a high speed and good effect on the smoke detection and make the early alarm work, And has accurate detection etc, so it' s convenient to be widely used in reality.
出处 《计算机测量与控制》 2015年第3期880-881,885,共3页 Computer Measurement &Control
基金 国家自然科学基金资助项目(61063040) 广西研究生教育创新计划资助项目(YCSZ2013068)
关键词 烟雾检测 运动块 线性分类器 固定干扰 机器学习 smoke detection motion block linear classifier fix interference machine learning
  • 相关文献

参考文献10

二级参考文献59

共引文献51

同被引文献23

引证文献1

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部