期刊文献+

小潜艇供电系统全桥DC-DC开关电源智能优化设计 被引量:1

Intelligent Optimum Design of Full-bridge DC-DC Switching Power Supply on Miniature Submarine's Power Supply System
下载PDF
导出
摘要 小型潜艇水下潜行采用蓄电池供电,通过全电力供电系统推进。以蓄电池为直流电源,在推进系统正常运转的状况下,开关电源电压输出值保持恒定;传统的PID控制器很难对全桥DC-DC开关电源进行精确控制,因此,将粒子群算法(PSO)、BP神经网络与径向基函数(RBF)神经网络与传统PID控制相结合,提出带有RBF神经网络辨识的PSO-BP-PID控制方法;通过神经网络在线自学习对PID3个参数在线调整,最终实现系统恒电压输出控制;仿真结果得出:带有RBF神经网络辨识的PSO-BP-PID控制算法可以很大的改善系统控制效果,同时使系统具有更好的在线调整能力。 Miniature submarines, powered by an all--electric propulsion system, are battery powered under the water. While the propulsion system is running normally, the battery acting as DC power supply, the output voltage of switching power supply remains constant. It is very difficult to acuurately control full--bridge DC--DC switching retulator using the traditional PID controller. So, this paper will combine particle swarm optimization (PSO). BP neural network, radial basis function (RBF) neural network, traditional PID and put for- ward the control method of PID algorithm based on neural network. Through online self--learning, the neural network adjusts the three parameters of the PID to get a eostant output voltage finally. Simulation results show that the PSO _ BP _ PID control algorithm with RBF neural network identification can greatly improve the control effect of the system, meanwhile, make the system online adjustment better.
出处 《计算机测量与控制》 2015年第3期913-916,共4页 Computer Measurement &Control
关键词 蓄电池 粒子群算法(PSO) BP神经网络 RBF神经网络 PID控制 全桥DC—DC开关电源 battery particle swarm optimization (PSO) BP neural network RBF neural network PID control full--bridge DC--DC switching power supply
  • 相关文献

参考文献5

  • 1Rodrigues J P, Mussa S A, Barbi I, et al. Three--level Zero--volt- age Switching Pulse-- with Modulation DC-- DC Boost Converter with Active Clamping [J]. Power Electronics, IET, 2010, 3 (5) : 345 - 354.
  • 2Jiexi Zhang, Yancheng Liu, QinjinZhang, Siyuan Liu. Reserch on the Dynamic Characteristics o~ Switching Power Supply [A]. 2013 International Conference Mechatronic Systems And Materials Appli- cation, Advanced Materials Research[C].
  • 3刘金琨编著.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2011:1-12,76-78.
  • 4胡晓青,程启明,白园飞,吴凯.基于RBF神经网络整定PID控制的UPQC并联侧研究[J].华东电力,2013,41(3):629-635. 被引量:2
  • 5景利学,苏宏升,赵伟.神经PID控制在SVPWM整流器VFDPC中的应用研究[J].电气传动,2012,42(7):16-19. 被引量:2

二级参考文献11

共引文献14

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部