期刊文献+

基于非线性有限元法的二维水下拖缆研究 被引量:2

Research of Two Dimensional Underwater Towed Cable Based on Nonlinear Finite Element
下载PDF
导出
摘要 水下拖缆研究是拖曳系统设计和使用的基础。由于受到水流力的作用,水下缆索呈现复杂的特性。本文首先推导了水下拖曳缆索的静力悬链线方程,将其结果作为非线性有限元方法的初始值;接着采用二节点等参索单元建立基于完全拉格朗日表述的增量平衡方程并使用牛顿-拉谱逊迭代法求解该方程;最后,采用Matlab编程,研究了该方法的收敛性及拖缆在重力、浮力和水流力作用下的形态与张力分布,得到了不同航速条件下缆索的形态及缆索张力的一些分布规律。 The research of the underwater towed cables is the foundation of design and application of the towed system. Due to the effect of water flow force, the towed cables present complex features. Firstly, the static catenary equation of the underwater towed cable is derived and the result is applied as the initial value of the nonlinear finite element method. Then, the equation of nonlinear finite element method using isoparametric cable element with two nodes is briefly presented on the basis of the total Lagrangian formulation and Newton-Raphson iterative method for solving this equation. Finally, utilizing Matlab code, the convergence of the method, the geometries of towing cable with cable weight, cable buoyancy, fluid drag, and the forces exerted on the cable by the submersible are studied. The conclusions about the relationship between geometry and distribution of tension of the cable with different currents are presented.
作者 邵校 刘祚秋
出处 《船舶标准化工程师》 2015年第2期63-68,共6页 Ship Standardization Engineer
关键词 拖曳缆索 悬链线 非线性有限元 towing cable catenary nonlinear finite element
  • 相关文献

参考文献1

二级参考文献64

  • 1廖世俊,顾云冠,朱继懋.6000m深海拖曳系统动力响应计算[J].海洋工程,1995,13(2):31-37. 被引量:9
  • 2楼连根,黄国梁,邬昌汉.水平面大振幅平面运动机构用于水下运载体水动力系数的研究[J].海洋工程,1993,11(2):8-14. 被引量:4
  • 3张潞怡,朱继懋.深海拖曳系统运动响应的理论研究[J].海洋学报,1997,19(2):99-106. 被引量:8
  • 4Cannon T C, Genin J. Dynamic behavior of a materially damped flexible towed cable[J]. Aeronautical Quarterly, 1972, 23: 109-120.
  • 5Irvine H M, Caughey T K. The linear theory of free vibrations of a suspended cable[A]. Proceedings of royal society of london, series A, 1974, 341: 299-315.
  • 6Leonard J W, Recher W W. Nonlinear dynamics of cables with low initial tension[J]. Journal of the Engineering Mechanics Division, ASCE. 1972, 98 (EM 2): 293-309.
  • 7Ma D, Leonard J. Slack-elasto-plastic dynamics of cable systems[J]. Journal of the Engineering Mechanics Division ASCE. 1979, 105 (EM2): 207-222.
  • 8Zhang L Y, Liang H, Zhou J M. A real time expert control system for 6000 m deep towing system[A]. Hydrodynamics-theory and applications (eds. Chwang. A T, Lee, J H W, and Leung, D Y C) A.A. Balkema, Rotterdom[M]. 1996, 1: 213-218.
  • 9Walton T S, Polachech H. Calculation of transient motion of submerged cables[J]. Mathematics of Computation, 1960, 14: 27-46.
  • 10Sanders J V. A three dimensional dynamic analysis of a towed system[J]. Ocean Engineering, 1982, 9(5): 483-499.

共引文献19

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部