期刊文献+

一种矢量人工势能场的多智能体编队避障算法 被引量:6

A Multi-Agent Algorithm of Obstacle Avoidance Based on Vectorial Artificial Potential Field
下载PDF
导出
摘要 针对多智能体编队通过障碍物区域的避撞和避障问题,利用传感器的监控功能,采用改进的人工势能场法对避障算法进行优化,使多智能体编队能有效地通过障碍物区域,并在通过障碍物区域后再次形成多智能体编队。首先,从多智能体模型上进行改进,建立一种具有可视化范围的速度为矢量的速度可变的智能体模型。然后,使用矢量的人工势能场法进行多智能体编队的避撞和避障。最后,针对多智能体编队避障过程中会存在"局部困扰"的情况,加入"回环力"使多智能体编队能够通过障碍物区域,并在通过障碍物区域后继续编队运行。同时,使用MATLAB软件在坐标系中进行多智能体编队的避障仿真,验证了改进人工势能场法的有效性和正确性,为多智能体编队避障问题提供了更加有效的方法。 In order to solve the collision avoidance and obstacle avoidance problem according to Multi-Agent formation through the obstacles area,an obstacle avoidance algorithm is optimized by the improved artificial potential field method,the Multi-Agent formation can effectively pass the obstacles area,and after passed the obstacles area,the Multi-Agent formed again. First,the Multi-Agent model is improved,Agent model is built based on the speed vector with a visualization range of speed. Then,the obstacle avoidance problem of Multi-Agent is solved using the Vectorial Artificial Potential Field(VAPF) method. Finally,by adding " rotational force" to the force of agent,the agents can easily pass the obstacles area,and solve the " local trouble". Simulation results verify the efficiency and validity of the method.
出处 《计算机仿真》 CSCD 北大核心 2015年第3期388-392,共5页 Computer Simulation
基金 国家自然科学基金(61164015) 2013年南昌航空大学研究生创新专项资金(YC2013-014)
关键词 多智能体编队 矢量人工势能场法 避障问题 局部困扰 回环力 Multi-agent formation Vectorial artificial potential field method Obstacle avoidance problem Local trouble Rotational force
  • 相关文献

参考文献17

  • 1顾东杰,周丰,郭鑫.智能舰艇编队指挥控制系统体系结构设计[J].指挥控制与仿真,2009,31(2):92-95. 被引量:6
  • 2司海飞,杨忠,王珺.无线传感器网络研究现状与应用[J].机电工程,2011,28(1):16-20. 被引量:136
  • 3刘佳,陈增强,刘忠信.多智能体系统及其协同控制研究进展[J].智能系统学报,2010,5(1):1-9. 被引量:33
  • 4高磊,闫敬.多智能体网络编队避障控制(英文)[J].安徽大学学报(自然科学版),2011,35(2):70-75. 被引量:2
  • 5Xiaomin Tong; Yanning Zhang; Tao Yang. Artificial Potential Field Based Cooperative Particle Filter for Multi- View Multi- Object Tracking[ C ]. Virtual Reality and Visualization ( ICVRV ), 2013 In- ternational Conference on ,pages :74-80.
  • 6Gao Yun; Wei Zhiqiang; Gong Feixiang; Yin Bo; Ji Xiaopeng. Dynamic Path Planning for Underwater Vehicles Based on Modified Artificial Potential Field Method [ C ]. Digital Manufacturing and Automation (ICDMA) , 2013 Fourth International Conference on, pages :518-521.
  • 7Mei Wang; Zhiyong Su; Dawei Tu; Xichang Lu. A hybrid algo- rithm based on Artificial Potential Field and BUG for path planning of mobile robot [ C ]. Measurement, Information and Control ( IC- MIC), 2013 International Conference on, 2013, pages: 1393 - 1398.
  • 8Xiaoming Wang; Wenfeng Li; Wei Song; Wentao Dong. Connec- tivity Controlling of Multi-robot by Combining Artificial Potential Field with a Virtual Leader[ C]. Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on, pages: 374 -377.
  • 9Yu Jianjun; Du Hongwei; Wang Guanwei; Zhou Lu. Research a- bout local path planning of moving robot based on improved artifi- cial potential field [ C ]. Control and Decision Conference ( CCDC), 2013 25th Chinese, pages :2861-2865.
  • 10Gomez, E.J. ; Marti&#x0301 ;nez Santa, F. ; Martinez Sarmien- to, F. H. A comparative study of geometric path planning methods for a mobile robot: Potential field and voronoi diagrams [ C 1. Engi- neering Mechatronics and Automation (CIIMA), 2013 II Interna- tional Congress of, oases : 1-6.

二级参考文献80

共引文献173

同被引文献42

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部