期刊文献+

一种科学工作流的云数据布局与任务调度策略 被引量:8

A Cloud Data Placement and Task Scheduling Strategy for Scientific Workflow
下载PDF
导出
摘要 云计算环境下,数据密集型科学工作流的数据文件在多数据中心间的合理布局,对科学工作流的执行效率具有很大的影响。根据科学工作流各数据集之间的依赖关系,并聚焦于运行科学工作流的各数据中心的处理能力差异和网络性能差异,提出一种可提高科学工作流执行性能的数据布局以及数据布局敏感的任务调度策略。分析和实验表明,上述策略可有效减少科学工作流运行时跨数据中心的数据传输,降低科学工作流的运行时间,从而提高科学工作流整体运行效率。 In cloud computing environment,for a data-intensive scientific workflow,the rational distribution of its task data files in multiple cloud data centers will largely impact its execution efficiency. In this paper,based on the dependence of scientific workflow task data,a data placement strategy and the related scheduling approach for scientific workflows in cloud was proposed,which can improve the workflow execution efficiency. The processing capacity differences of data centers and the bandwidth differences among them were also taken into account. The analysis and simulation show that the strategy can observably reduce the data transfer across data centers and the time cost of scientific workflow,and hence improve the whole efficiency of scientific workflows.
出处 《计算机仿真》 CSCD 北大核心 2015年第3期421-425,437,共6页 Computer Simulation
基金 国家自然科学基金项目(61462076) 甘肃省科技支撑计划项目(1104GKCA023) 甘肃省科技攻关项目(1208RJZA134)
关键词 云计算 科学工作流 数据依赖 数据布局 任务调度 Cloud computing Scientific workflow Data dependence Data placement Task scheduling
  • 相关文献

参考文献14

  • 1C Lin, et al. A reference architecture for scientific workflow man- agement systems and the view SOA solution [ J ]. IEEE Transac- tions on Service Computing, 2009,2( 1 ) :79-92.
  • 2J Shendure, H Ji. Next-generation DNA sequencing[ J]. Nature Bioteehnology, 2008,26 (10) : 1135-1145.
  • 3Y Zhao, Y Li, W Tian, R Xue. Scientific-Workflow-Management -as-a-Service in the Cloud[ C]. Second International Conference on Cloud and Green Computing, 2012:97-104.
  • 4E Deelman, et al. The cost of doing science on the cloud: The- montage example [ C ]. proc of 2008 ACM/IEEE Conference on Supereomputing, 2008 : 1 - 12.
  • 5T Kosar, M Livny. A framework for reliable and efficient data placement in distributed computing systems[J]. Journal of Parallel and Distributed Computing, 2005,65(10) : 1146- 1157.
  • 6N Hardavellas, et al. Reactive NUCA: Near-optimal block place- ment and replication in distributed caches [ C ]. Proc of the 36th Annual Int Syrup on Computer Architecture. New York: ACM, 2009:184-195.
  • 7Z Duet al. Optimized Qos-aware replica placement heuristics and applications in astronomy data grid[ J]. The Journal of Systems and Software, 2011,84(7) : 1224-1232.
  • 8D Yuan, et al. A data placement strategy in scientific' cloud work- flows[ J ]. Future Generation Computer Systems, 2010, 26 (8) : 1200- 1214.
  • 9MCCORMICKW T,SEHWEITZER P J, WHITE T W. Problem de- composition and data reorganization by a clustering technique[ J ]. Operations Research, 1972,20(5 ) :993-1009.
  • 10D Yuan, et al. A highly practical approach toward achieving minimum data sets storage cost in the cloud [ J ]. [EEE Transac- tions On Parallel And Distributed Systems, 2013,24 ( 6 ) : 1234 - 1244.

二级参考文献66

  • 1王菁,张利永,韩燕波.Client-Centric Adaptive Scheduling of Service-Oriented Applications[J].Journal of Computer Science & Technology,2006,21(4):537-546. 被引量:4
  • 2韩燕波,王洪翠,王建武,闫淑英,张程.一种支持最终用户探索式组合服务的方法[J].计算机研究与发展,2006,43(11):1895-1903. 被引量:15
  • 3Deelman E,Chervenak A.Data management challenges of data-intensive scientific workflows//Proceedings of the IEEE International Symposium on Cluster Computing and the Grid(CCGRID).Lyon,France,2008:687-692.
  • 4Deelman E,Blythe J,Gil Y,Kesselman C,Mehta G,Patil S,Su M H,Vahi K,Livny M.Pegasus:Mapping scientific workflows onto the grid//Proceedings of the European Across Grids Conference(AxGrids).Nicosia,Cyprus,2004:11-20.
  • 5Ludascher B,Altintas I,Berkley C,Higgins D,Jaeger E,Jones M,Lee E A.Scientific workflow management and the Kepler system.Concurrency and Computation:Practice and Experience,2005,18(10):1039-1065.
  • 6Oinn T,Addis M,Ferris J,Marvin D,Senger M,Greenwood M,Carver T,Glover K,Pocock M R,Wipat A,Li P.Taverna:A tool for the composition and enactment of bioinformatics workflows.Bioinformatics,2004,20(17):3045-3054.
  • 7Ghemawat S,Gobioff H,Leung S T.The google file system.ACM SIGOPS Operating Systems Review,2003,37(5):29-43.
  • 8Wang L,Tao J,Kunze M,Castellanos A C,Kramer D,Karl W.Scientific cloud computing:Early definition and experience//Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications(HPCC).Dalian,China,2008:825-830.
  • 9Wieczorek M,Prodan R,Fahringer T.Scheduling of scientific workflows in the ASKALON grid environment.SIGMOD Record,2005,34(3):56-62.
  • 10Baru C,Moore R,Rajasekar A,Wan M.The SDSC storage resource broker//Proceedings of the IBMCentre for Advanced Studies Conference.Toronto,Canada,1998:1-12.

共引文献200

同被引文献51

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部