期刊文献+

弱Liouville频率下解析拟周期Jacobi算子Lyapunov指数的Hölder连续性

Hölder Continuity of Lyapunov Exponent for Analytic Quasi-periodic Jacobi Operators with Weak Liouville Frequency
下载PDF
导出
摘要 考虑一维拟周期Jacobi算子(Hx,ωΦ)(n)=-b(x+(n+1)ω)Φ(n+1)-b(x+nω)Φ(n-1)+a(x+nω)Φ(n),n∈Z Lyapunov指数的连续性,其中:x∈T;a(x),b(x)在T上实解析且b(x)不恒为零.运用次调和函数的Fourier系数控制理论,结合ω的数论性质,通过分析得到Jacobi算子的大偏差定理及该算子在弱Liouville频率下其Lyapunov指数的Hlder连续性. We studied the Hlder continuity of the Lyapunov exponent associated with 1-D quasiperiodic Jacobi operators(Hx,ωΦ)(n)=-b(x+(n+1)ω)Φ(n+1)-b(x+nω)Φ(n-1)+a(x+nω)Φ(n), n∈Z,where x∈T,a(x),b(x)are real analytic onTTand b(x)is not identically zero.Using the control theory of the Fourier coefficient of subharmonic function and the number property ofω,we obtained the large deviation theorem through more detailed analysis and the Hlder continuity of the Lyapunov exponent for the operators with weak Liouville frequency by further using the avalanche principle.
作者 高敏
机构地区 河海大学理学院
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第2期213-223,共11页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11171090)
关键词 Jacobi算子 LYAPUNOV指数 Hölder连续 Jacobi operator Lyapunov exponent Hölder continuous
  • 相关文献

参考文献8

  • 1YOUJiangong, ZHANG Shiwen. Holder Continuity of the Lyapunov Exponent for Analytic Quasiperiodic Schrodinger Cocycle with Weak Liouville Frequency[J]. Ergodic Theory and Dynamical Systems, 2014, 34(4): 1395-1408.
  • 2WANG Yiqian , YOUJiangong. Examples of Discontinuity of Lyapunov Exponent in Smooth Quasi-periodic Cocycles[J]. Duke MathJ, 2013, 162(3): 2363-2412.
  • 3BourgainJ,Jitomirskaya S. Continuity of the Lyapunov Exponent for Quasiperiodic Operators with Analytic Potential[J].Journal of Statistical Physics, 2002, 108(5/6): 1203-1218.
  • 4TAO Kai. Holder Continuity of Lyapunov Exponent for Quasi-periodicJacobi Operators D/OL]. 2011-08-18. http://arxiv. org/pdf/1108. 3747vl. pdf.
  • 5Jitomirskaya S, Marx C A. Continuity of the Lyapunov Exponent for Analytic Quasi-periodic Cocycles with Singularities[J].Journal of Fixed Point Theory and Applications, 2011, 100): .129-146.
  • 6Jitomirskaya S, Marx C A. Analytic Quasi-perodic Cocycles with Singularities and the Lyapunov Exponent of Extended Harper's Model[J]. Comm Math Phys, 2012. 316(1): 237-267.
  • 7Goldstein M, Schlag W. Fine Properties of the Integrated Density of States and a Quantitative Separation Property of the Dirichlet Eigenvalues[J]. Geometric and Functions Analysis, 2008, 18(3): 755-869.
  • 8BourgainJ. Green's Function Estimates for Lattice Schrodinger Operators and Applications[M]. Princeton: Princeton University Press, 2005: 173.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部