期刊文献+

羟基氧化镓超分支纳米晶体的制备及生长机制

Preparation and Growth Mechanism of Gallium Oxyhydroxide Hyperbranched Nanoarchitectures
下载PDF
导出
摘要 以无水氯化镓的苯饱和溶液和甲醇为初始原料,在反应釜中进行醇解反应,并采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)分析样品的形貌、成分和结构.结果表明:羟基氧化镓粉体为分散性良好的纳米刷,长度约为2~6μm;在超分支麦穗状羟基氧化镓纳米结构形成过程中,晶体劈裂生长机制起主导作用. Hyperbranchedα-GaOOH nanocrystals with a sheaf-like morphology have been prepared via the alcoholysis process with GaCl3 and methanol as the reactants in the presence of benzene as solvent in an autoclave.XRD patterns strongly indicate that the synthesized sample wasα-GaOOH.SEM and TEM images indicate that the product was composed of hyperbranchedα-GaOOH nanocrystals.For the formation ofα-GaOOH hierarchical nanoarchitectures,the crystal splitting growth mechanism plays a dominant role,which has been evidenced by the characterization of the time-dependent morphologies of the prepared samples.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第2期327-330,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:50772043 51172087 11074089) 国家重点基础研究发展计划973项目基金(批准号:2011CB808200)
关键词 醇解过程 羟基氧化镓 超分支纳米结构 晶体劈裂机制 alcoholysis process gallium oxyhydroxide hyperbranched nanoarchitecture crystal splitting mechanism
  • 相关文献

参考文献10

  • 1Ll Zhaohui . XIE Zhipeng , ZHANG Yongfan , et al. Wide Band Gap p-Block Metal Oxyhydroxide InOOH: A New Durable Photocatalyst for Benzene Degradation[J]. 1 Phys Chern C, 2007, 111(49): 1831\8-18352.
  • 2WANG Fei. LlU Chengshuai , Shih K. Adsorption Behavior of Perfluorooctanesulfonate (PFOS) and Per iluorooctanoate (PFOA) on Boehmite[J]. Chernosphere , 2012. 89(8): 1009-1014.
  • 3Assaaoudi H. Fang Z, Barralct 1 E, et al. Synthesis, Characterization and Properties of Erbium-Based Nanofibres and Nanorods[J]. Nanotechnology, 2007. 18(44): 445606.
  • 4Funabiki A, Yasuda H. Yamachi M. Low-Crystalline ,8-FeOOH and Vanadium Ferrite for Positive Active Materials of Lithium Secondary Cells[J].J Power Sources, 2003, 119: 290-294.
  • 5ZHANG Iie , LlU Zhiguo , LlN Cuikun , et al. A Simple Method to Synthesize ,8-Ga203 Nanorods and Their Photoluminescence Properties[J].J Cryst Growth, 2005. 280( 1/2): 99-106.
  • 6SUN Meng, Ll Danzhcn , ZHANG Wenjuan, et al. Rapid Microwave Hydrothermal Synthesis of GaOOH Nanorods with Photocatalytic Activity toward Aromatic Compounds[J]. Nanotechnology, 2010, 21(35): 355601.
  • 7Frost R L, ZHAO Yanyan , YANGJ ing , ct al. Size and Morphology Control of Gallium Oxide Hydroxide GaO(OH). Nano-to Micro-sized Particles by Soft Chemistry Route without Surfactant[J].J Phys Chern C, 2008, 112(0): 3568-3579.
  • 8QlAN Haisheng , Gunawan P, Zl lANG Yunxia , et al. Template-Free Synthesis of Highly Uniform ":.GaOOH Spindles and Conversion to a-Ga20, and ,8-Ga?O,[J]. Growth Des, 2008, 8(1\): 1282-1287.
  • 9Avivi S, Masrai Y. Hodes G. et al. Sonochemical Hydrolysis of Galt Ions: Synthesis of Scroll-Like Cylindrical Nanoparticles of Gallium Oxide Hydroxide[J].J Am Ceram Soc, 1999, 121(17): 4196-1\199.
  • 10Kurokawa H, Senna M. Self-stabilization of Green Rust ( II ) as a Precursor of Acicular Goethite Particles with Highest Possible Aspect Ratio[J]. Powder Technol. 1999, 103(2): 71-79.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部