期刊文献+

修正的RDP逻辑系统中的广义重言式理论 被引量:1

Theory of generalized tautology in revised RDP logical system
下载PDF
导出
摘要 提出修正的RDP逻辑系统,并证明了此系统中的广义重言式有更加精细的区分。利用广义重言式概念得到公式集F(S)的一个分划,建立了修正的RDP逻辑系统中的各类广义语义MP规则与广义语义HS规则。 A revised RDP logic system was proposed,in which the generalized tautology was finely partitioned. A new partition of F( S) was obtained by utilizing the concept of generalized tautologies. A variety of generalized semantic MP rules and generalized semantic HS rules were obtained in the revised RDP logic system.
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2015年第4期315-320,共6页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(11471007) 陕西省自然科学基金(2014JM1020) 陕西省科技计划社发攻关项目(2014ks15-03-07)
关键词 修正的RDP逻辑系统 广义重言式 广义语义MP规则 广义语义HS规则 分划 revised RDP logic system generalized tautology generalized semantic MP rules generalized semantic HS rules partition
  • 相关文献

参考文献11

二级参考文献62

  • 1秦克云 徐杨.一个格值命题逻辑系统[J].模糊系统与数学,1994,8:322-326.
  • 2[1] Bolc L, Borowik P. Many-Valued logic[M]. Berlin: Springer-Verlag, 1992.
  • 3Esteva F, Godo L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms[J]. Fuzzy Sets and Systems, 2001,124: 271-288.
  • 4Hajek. Metamathematics of fuzzy logic[M]. London:Kluwer Academic Publishers,1998.
  • 5Jenei S. A note on the ordinal sum theorem and its consequence for the construction of triangular norms[J]. Fuzzy Sets and Systems,2002,126 : 199-205.
  • 6Klement E P, Mesiar R, Pap E. Triangular norms[M]. Dordrecht :Kluwer Academic Publishs,2000.
  • 7Wang S M. A fuzzy logic for the revised drastic product t-norm[J]. Soft Computing,2007,11:582-590.
  • 8Wang S M, Wang B S, Pei D W. A fuzzy logic for an ordinal sum t-norm[J]. Fuzzy Sets and Systems,2005,149.. 297-307.
  • 9Dubois D,Prade H.Fuzzy sets in approximate reasoning(I,II)[J] Fuzzy Sets and Systems, 1991,40(2) : 143-244.
  • 10Elkan C.The paradoxical success of fuzzy logic[J].IEEE Expert, 1994,9(4) :3-8.

共引文献220

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部