摘要
利用广义Fibonacci多项式Fn(x,y)和Lucas多项式Ln(x,y)的性质,研究组合和式Rn(x,y;tx2).结合Bernoulli和Euler多项式的生成函数,给出Fn(x,y)和Ln(x,y)的两个恒等式,进一步推广了Velasco的结果.
The summation form of Rn (x,y;tx2) is studied by the properties of generalized Fibonacci polynomials Fn (x, y) and Lucas polynomials Ln (x, y). Meanwhile, using the generating function of Bernoulli polynomials and Euler polynomials, the two identities concerning Fn (x,y)Ln (x,y) are obtained. Thus some results obtained by Velasco are generalized.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
北大核心
2015年第1期22-25,共4页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
陕西省自然科学基础研究计划基金资助项目(2013JM1017)
陕西省教育厅科学研究基金资助项目(11JK0470)