期刊文献+

求解随机非线性互补问题的一种光滑化样本均值逼近方法 被引量:1

A Class of Smoothing SAA Methods for A Stochastic Nonlinear Complementarity Problem
下载PDF
导出
摘要 提出一种基于光滑Fischer-Burmeister函数的光滑化样本均值逼近方法,并用该方法求解随机非线性互补问题,在适当的条件下,证明了光滑化SAA问题的最优解几乎处处指数收敛到真问题的最优解.算例的数值计算结果验证了算法的合理性和有效性. A smoothing sample average approximation method based on a version of Fiseher-Burmeis- ter smoothing functions is proposed in this paper. It is used to solve the stochastic nonlinear complementar- ity problem. Under suitable conditions ,the almost sure convergence and exponential rate of this method is proved. The numerical test results indicate the efficiency of our method.
作者 瑛瑛 韩金桩
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2015年第1期29-34,共6页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 呼伦贝尔学院青年项目(YJQN2C201203)
关键词 随机非线性互补问题 光滑Fischer-Burmeister函数 样本均值逼近 收敛性 stochastic nonlinear complementarity problem smoothing Fischer-Burmeister function sample average approximation convergence
  • 相关文献

参考文献14

  • 1Cottle R W,Pang J S,Stone R E. The Linear Complementarity Problern [M]. Boston:Academic Press,1992.
  • 2Facchinei F,Pang J S. Finite-Dimensional Variational Inequalities and Comp!ementarity Problem, Ⅰ and Ⅱ [M]. New York: Springer, 2003.
  • 3ChenX,FukushimaM. Expected residual minimization method for stochastic linear complementarity problems [J]. Math Oper Res, 2005.30 : 1022-1038.
  • 4Chen X. Zhang C, Fukshima M. Robust solution of monotone stochastic linear complementarity problems[J]. Math Program, 2009,117 : 51-80.
  • 5Fang H,Chen X, Fukushima, M. Stochastic R0 matrix linear complementarity problems [J]. SIAM J Optim, 2007,18: 482-506.
  • 6Gtirkan G, Ozge A Y, Robinson S M. Sample-path solution of stochastic variational inequalities [J]. Math Program, 1999,84:313-333.
  • 7Lin G H. Combined Monte Carlo sampling and penalty method for stochastic nonlinear complementarity problems [J]. Mathematics of Computation, 2009,78 : 1671-1686.
  • 8Ruszczyfiski A, Shapiro A. Stochastic Programming, Handbooks in OR& MS [M]. Amsterdam:North-Holland, 2003.
  • 9Xu H F. An implicit programming approach for a class stochastic mathematical programs with equilibrium constraints [J]. SIAM J Optim,2006,16:670-696.
  • 10Shapiro A, Dentcheva D, Ruszczyflski A. Lectures on Stochastic Programming: Modeling and Theory [M]. Philadel- phia:SIAM, 2009.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部