期刊文献+

改进的压缩感知量测矩阵优化方法 被引量:5

Improved optimization algorithm for measurement matrix in compressed sensing
下载PDF
导出
摘要 压缩感知理论中信号的重建要求量测矩阵与稀疏变换基之间的互相关性要尽可能小。以降低二者互相关性为目的,研究了一种改进的基于变步长梯度下降的量测矩阵优化方法。该方法利用梯度下降法更新步长,并基于模拟退火中的降温思想引入学习速率因子来进一步调节步长的变化,提高算法的收敛速度,改善算法的性能。仿真结果表明,使用变步长梯度下降法优化后的量测矩阵与稀疏变换基的互相关系数在零附近的分布更加集中,量测矩阵的优化速度快并且重构图像的峰值信噪比提高。因此,所提方法优化所得的量测矩阵无论是降低互相关性还是提高图像重建质量都具有良好的性能。 The signal recovery performance of compressed sensing (CS) requires that the cross correlations between the measurement matrix and sparse transformed matrix should be as small as possible. In order to re- duce the cross correlations, an varied step gradient descent algorithm is studied and si-mulated annealing (SA) learning rate factor is introduced to adjust the step function. The simulation results demonstrate that due to the adaptive adjustment of step length in the iteration process, the speed of optimizing matrix is fast, more mutual coherence coefficients are distributed around zero, and the peak signal to noise ratio of reconstructed image is improved with the optimized measurement matrix. The improved algorithm has good performance in achieving lower mutual coherence and improving reconstruction performance.
作者 王彩云 徐静
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第4期752-756,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(61301211)资助课题
关键词 压缩感知 量测矩阵 梯度下降 变步长 优化 compressed sensing (CS) measurement matrix gradient descent varied step optimization
  • 相关文献

参考文献20

  • 1Donoho D. Compressed sensing[J J. IEEE Trans, on Injorma-tion Theory , 2006. 52(4): 1289 - 1306.
  • 2Candes E,Romberg J,Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency in-formation[J]. IEEE Trans, on Information Theory , 2006, 52(2): 489 -509.
  • 3Elad M, Michal A. Image denoising via sparse and redundantrepresentations over learned dictionaries [J]. IEEE Trans, onImage Processing,2006,15(12) : 3736 - 3745.
  • 4常虹,卢光跃,冯景瑜.基于压缩感知的无模糊宽带测向技术[J].系统工程与电子技术,2013,35(5):920-923. 被引量:1
  • 5Zhou T Y,Tao D C. 1-bit hamming compressed sensing[C] //Proc. of the IEEE International Symposium Information Theo-ry , 2012: 1862 - 1866.
  • 6李星秀,韦志辉,肖亮,费选.非局部正则化的压缩感知图像重建算法[J].系统工程与电子技术,2013,35(1):196-202. 被引量:7
  • 7Candes E. The restricted isometry property and its implicationsfor compressed sensing [J]. Comptes Rendus Mathematique ,2008,346(9/10): 589 - 592.
  • 8Baraniuk R. A lecture on compressive sensing[J]. IEEE SignalProcessing Magazine , 2007,24(4) : 118 - 121.
  • 9Nhat V D M, Vo D, Challa S,et al. Efficient projection forcompressed sensing[C] // Proc. of the Computer and In forma-tion Science , 2008 : 322 - 327.
  • 10Elad M. Optimized projections for compressed sensing [J].IEEE Trans . on Signal Processing,2007,55(12) :5695 - 5702.

二级参考文献78

  • 1龚享铱,皇甫堪,袁俊泉.基于相位干涉仪阵列二次相位差的波达角估计算法研究[J].电子学报,2005,33(3):444-446. 被引量:20
  • 2D. Donoho, Compressed sensing [ J]. IEEE Transactions on Information Theory,2006,52(4) :1289-1306.
  • 3E. Candes, J. Romberg, T. Tao, Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Infor- mation Theory ,2006,52 ( 2 ) :489-509.
  • 4J. Romberg, Imaging via compressive sampling [ J ]. IEEE signal processing magazine 2008,3.
  • 5W. Bajwa, J. Haupt, A Sayeed and R Nowak. Joint source channel communication for distributed estimation in sensor networks [ J]. IEEE Transactions on signal pro- cessing,2007,53 (10) :3629-3653.
  • 6D. Donoho and Y. Tsaig. Extensions of compressed sens- ing [ J ]. Signal Processing,2006.7,86 ( 3 ) :533-548.
  • 7E Cand~s. Compressive sampling [ J]. Int. Congress of Mathematic, Madrid, Spain,2006,3 : 1433-1452.
  • 8W. Bajwa, J. Haupt, G. Raz, S. Wright, and R. Nowak. Toeplitz-structured compressed sensing matrices [ J ]. IEEE Workshop on Statistical Signal Processing (SSP), Madison, Wisconsin, 2007.8,294-298.
  • 9R. DeVore. Deterministic constructions of compressed sensing matrices [ J ]. Journal of Complexity,2007,23 (4- 6) :918-925.
  • 10Ruizhen Zhao, Hao Li, Zhou Qin, Shaohai Hu, A new construction method for generalized Hadamard matrix in compressive sensing [ C ]. 2011 Cross-Strait Conference on Information Science and Technology, Taiwan, Dan- shui, Dec ,8-9,2011,309-313.

共引文献51

同被引文献19

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部