期刊文献+

大倍率放电时电动汽车用锂离子电池的热性能 被引量:5

Electrical and thermal performances of lithium-ion battery for electric vehicle at high discharge rate
下载PDF
导出
摘要 为保证锂离子动力电池安全、可靠和高效的运行,实验研究了其在大倍率放电时的热性能。实验中,对于一款商业电动车用3.2 V、50 Ah锂离子电池,用充放电测试仪和温湿度巡检仪,控制放电倍率为1C^3C(50~150 A)。结果表明:电池放电倍率越大,电池两端工作电压平台越低,电池放电量越小,电池表面的温升率越大。当放电倍率达到3C(150 A)时,电池表面温度超出其安全工作温度,因而,锂离子动力电池在大倍率放电时,需要为其增加散热设备。拟合了一组用于计算不同放电倍率下电池的瞬时产热量的经验公式。这些公式可用于锂离子动力电池的辅助散热设备的设计和选择。 The electrical and thermal performances of power lithium-ion batteries used in electric vehicles were experimentaly investigated to guarantee the power lithium ion battery operate safely, reliably and efifciently. A charge and discharge tester and a temperature / humidity recorder were used to control the various rate of discharge at the arrange of 1C^3C (50~150 A) for a kind of 3.2 V/50 Ah lithium-ion power batteries commercial applied. The test results show that the operator voltage platform between battery two ends is going to lower with the output energy decreasing and the battery surface temperatures increasing when the discharged rate increases. The temperature at the lithium-ion battery surface exceeds the temperature limit for battery safely operating when the battery discharged rate up to 3C rate (or 150 A). Therefore, being equipped with cooling device is necessary for battery to ensure battery operate safely and efifciently. A group of empirical formulae was iftted for the battery transient heat production battery at various battery discharge rate. The formulas can be used to design and select auxiliary cooling devices for power lithium-ion batteries.
出处 《汽车安全与节能学报》 CAS CSCD 2015年第1期97-101,共5页 Journal of Automotive Safety and Energy
基金 广东省战略性新兴产业核心技术攻关项目(2011A010802001)
关键词 电动汽车 动力锂离子电池 热性能 倍率性能 瞬时产热量 辅助散热设备 electric vehicles lithium-ion power battery thermal performances rate capability transient heat generation rate auxiliary cooling devices
  • 相关文献

参考文献11

  • 1ZHANG Guoqing, ZHANG Yunyun, RAO Zhonghao. Phase change materials coupled with copper foam for thermal management of lithium-ion battery advanced science [J]. Eng andMed, 2012, 4(6): 484-487.
  • 2Kiziel R, Lateef A, Sabbah R, et al. Passive control of temperature excursion and uniformity in high energy li- ion battery packs at high current and ambient temperature [J]. J Power Sources, 2008, 183: 370-375.
  • 3Harding G G. Electric vehicles in the next millennium [J]. J Power Sources, 1999, 78: 193-198.
  • 4Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles [J]. JPower Sources, 2001, 99: 70-77.
  • 5ZHANG Yunyun, ZHANG Guoqing, WU Weixiong, et al. Heat dissipation structure research for rectangle LiFePO4 power battery [J]. Heat and Mass Transfer, 2014, 50: 887- 893.
  • 6邹政耀,王若平.新能源汽车技术[M].北京:国防工业出版社.2012,7.
  • 7Iwahori T, I Mitsuishi, S Shiraga, et al. Development of lithium ion and lithium polymer batteries for electric vehicle and home-use load leveling system application [J]. Elec-Chem Acta, 2000, 45: 1509-1512.
  • 8WU Mao-Sung, LIU K H, WANG Yung-Yun, et al. Heat dissipation design for lithium-ion batteries [J]. JPower Source, 2002, 109: 160-166.
  • 9Inui Y, Kobayashi Y, Watanabe Y, et al. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries [J]. Energy Conv and Mana, 2007, 48: 2013-2019.
  • 10Skim U, Kim C S. Effect of electrode configuration on the thermal behavior of a lithium-polymer battery [J]. JPower Sources, 2008, 180: 909-916.

共引文献2

同被引文献16

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部