期刊文献+

齿轮振动信号滑动递归分析及其应用 被引量:2

Sliding Recurrence Analysis and its Application of Gear Vibration Signal
原文传递
导出
摘要 采用递归图对齿轮振动信号进行研究,发现不同状态下的齿轮振动信号递归图存在明显差异,分析了这些递归图所表征的传动系统动力学特征。将递归图看作一幅能反映齿轮状态信息的二值图像,用递归率、确定率、层流率、递归时间等递归特征量对该二值图像进行特征描述,分析了递归特征量所代表的系统动力学特征和对应的递归图像特征。采用滑动递归分析对递归图进行分析,以更好地刻画递归图局部特征。应用该方法结合高斯混合模型及最大贝叶斯分类器对采自实验台的齿轮振动信号进行故障分类实验,结果表明应用该特征提取方法可获得较高的故障识别率。 According to the recurrence plot analysis to the gear vibration signal,it is found that there are obvious difference between the gear condition and the driver system characteristics represented by recurrence plots.If the recurrence plots are regarded as a binary image,the parameters calculation by recurrence qualification analysis,such as recurrence rate,determinism,laminarity and recurrence time etc can be used to describe the feature of the image.The characteristics of recurrence plots that correspond to dynamical system and image respectively are analyzed.In order to depict the local feature of recurrence plot,the sliding recurrence analysis is proposed.The proposed approach combined with Gaussian mixture model and Bayesian maximum likelihood classifier are used to classify the gear vibration signals which are acquired from gear fault experiment facility.The classification results show that the higher discrimination rate can be achieved by the proposed method.
作者 肖涵 吕勇
出处 《机械传动》 CSCD 北大核心 2015年第3期31-35,共5页 Journal of Mechanical Transmission
基金 国家自然科学基金青年基金(51105284)
关键词 递归图 递归定量分析 二值图像 高斯混合模型 故障识别 Recurrence plot Recurrence quantification analysis Binary image Gaussian mixture model Fault recognition
  • 相关文献

参考文献16

  • 1吕勇,李友荣,徐金梧.延时矢量方差算法及其在齿轮故障识别中的应用[J].振动与冲击,2006,25(6):59-61. 被引量:11
  • 2Loutridis S J.Loutridis Self-similarity in vibration time series application to gear fault diagnosis[J].Journal of Vibration and Acoustics,2008,130(3):1004-1013.
  • 3李兵,张培林,米双山,刘东升,任国全.齿轮故障信号多重分形维数的形态学计算方法[J].振动.测试与诊断,2011,31(4):450-453. 被引量:17
  • 4罗颂荣,程军圣,郑近德.基于ITD分形模糊熵的轴承早期故障诊断[J].振动.测试与诊断,2013,33(4):706-711. 被引量:21
  • 5Marwan N,Thiel M,Nowaczyk N R.Cross recurrence plot based synchronization of time series[J].Nonlinear.Proc.Geophys,2002(9):325-331.
  • 6Zbilut J P,Webber J,Charles L.Embeddings and delays as derived from quantification of recurrence plots[J].Physics Letters A,1992,171(1):199-203.
  • 7Joseph V,Michalowicz,J M Nichols,F Bucholtz.Signal detection based on recurrence matrix statistics[J].Physics Letters A,2008,372(48):7172-7178.
  • 8Diogo C Soriano,Ricardo Suyama,Romis de Faissol Attux.Blind extraction of chaotic sources from mixtures with stochastic signals based on recurrence quantification analysis[J].Digital Signal Processing,2011,21(3):417-426.
  • 9Hui Yang,Satish T S.Bukkapatnam,Leandro G.Barajas.Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems[J].Pattern Recognition,2011,44(8):1834-1840.
  • 10Norbert Marwan,M Carmen Romano,Marco Thiel,et al.Recurrence plots for the analysis of complex systems[J].Physics Reports,2007,438(5):237-329.

二级参考文献72

共引文献83

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部