期刊文献+

基于多尺度图像局部结构分解的人脸特征提取方法 被引量:1

Face Feature Extraction and Recognition Method for Multi-scale Local Structure-based Image Decomposition
下载PDF
导出
摘要 为了有效提取人脸图像的全局和局部特征以提高人脸识别的性能,提出一种基于多尺度图像局部结构分解的人脸特征提取方法。该方法首先通过多尺度分析构建人脸图像金字塔,然后对于金字塔中每一层的图像应用脊回归度量图像局部窗口内中心宏像素与其近邻宏像素之间的结构关系从而刻画出图像的局部结构信息,再根据得到的局部结构信息将图像分解为若干个子图像,最后将这些子图像均匀下采样和归一化后连接在一起形成一个特征向量。实验结果表明,与Gabor、LBP和IDLS等方法相比,该方法具有更好的识别性能。 In order to effectively extract the global and local features to improve the performance of face recognition,this paper presents a robust yet simple feature extraction method,called multi-scale image decomposition based on local structure. In the algorithm,the face image pyramid is first constructed through a multi-scale analysis. Then the local structural information by describing the relationship between the central macro-pixel and its neighbors for each level of the image pyramid is captured. In this way,one image is actually decomposed into a series of sub-images. Finally,all the structure images,after being down-sampled,are concatenated in one super-vector. Experimental results show that the proposed method is superior to some traditional methods such as Gabor,LBP and IDLS.
出处 《计算机与现代化》 2015年第3期52-56,共5页 Computer and Modernization
关键词 多尺度 图像金字塔 图像分解 局部结构特征 人脸识别 multi-scale image pyramid image decomposition local structure feature face recognition
  • 相关文献

参考文献4

二级参考文献60

  • 1黄丽,庄越挺,苏从勇,吴飞.基于多尺度和多方向特征的人脸超分辨率算法[J].计算机辅助设计与图形学学报,2004,16(7):953-961. 被引量:3
  • 2孙永宣,何柯峰,胡良梅.一种新的基于DCT变换的人脸表征[J].合肥工业大学学报(自然科学版),2006,29(11):1396-1399. 被引量:2
  • 3Turk M, Pentland A. Eigenfaces for recognition [J], Journal of Cognitive Neuroscience, 1991, 3(1): 71-86
  • 4Etenmad K, Chellappa R. Discriminant analysis for recognition of human face images [J]. Journal of the Optical Society of America, 1997, 14(8): 1724-1733
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherface: recognition using class special linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
  • 6Yang J, Zhang D, Frangi A F, et al. Two dimensional PCA: a new approach to appearance -based face representation and recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1):131- 137
  • 7Brunelli R, Poggio T. Face recognition: features versus templates [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052
  • 8Beymer D J. Face recognition under varying pose [C] // Proceedings of Computer Vision and Pattern Recognition, Seattle, 1994:756-761
  • 9Nefian A V, Hayes M H. An embedded HMM-based approach for face detection and recognition [C] //Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, 1999, 6:3553-3556
  • 10Martinez A M. Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 748-763

共引文献71

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部