期刊文献+

基于粒子群算法的抄纸过程PID神经元网络优化控制 被引量:4

PID Neural Network Optimizing Control Based on Particle Swarm Optimization in Paper Process
下载PDF
导出
摘要 抄纸过程中定量和水分的控制是一个大纯滞后、强耦合和非线性的系统,本文提出使用粒子群算法优化的PID神经元网络来解决这些控制问题。设计的双PID神经元网络闭环控制系统中,网络结构简单,使用增加动量项的误差反向传播算法,提高了学习速度,减少了系统的反应时间,并采用粒子群算法优化网络的初始权值,克服PID神经网络学习过程中由于权值易陷入局部最优值的缺点,提高了系统的控制精度。仿真结果表明:初始权值优化后的PID神经网络控制系统具有更高的控制精度和更快的响应时间,能更好地实现抄纸过程的解耦控制。这为抄纸过程定量水分的自动控制提供了一种新的方法。 The optimal control of basis weight and moisture content in paper process with strong coupling,nonlinear and large time delay is difficult to achieve. To solve the problem,the optimal PID neural network controller by particle swarm optimization was adopted in the control system. Because the network structure was simple and a modified error back propagation algorithm with momentum factor was used,the learning speed was increased and the reaction time of the system became short. Particle swarm optimization was used to optimize the initial weights of PID neural network to avoid local optimization for obtaining better control accuracy. Simulation results show PID neural network optimizated by the network's initial weights is of better adaptability,decoupling ability and robustness in the decoupling control of basis weight and moisture content. It is a new method for the control of basis weight and moisture content in paper process.
作者 吴新生
出处 《计算机与现代化》 2015年第3期71-74,79,共5页 Computer and Modernization
基金 广东省自然科学基金资助项目(8451064007000003)
关键词 粒子群算法 PID神经元网络 优化 抄纸过程 particle swarm optimization(PSO) PID neural network optimization paper process
  • 相关文献

参考文献16

二级参考文献88

共引文献172

同被引文献31

  • 1李伯群,傅剑,张瑞成,孙一康.热连轧活套高度和张力系统的解耦控制[J].北京科技大学学报,2005,27(5):596-599. 被引量:6
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3Griffin A. Modeling and measuring product development cycle time across industries[J].Journal of Engineering and Technology Management, 1997,14(1):1-24.
  • 4Bashir H A, Thomson V. Models for estimating design effort and time[J].Design Studies, 2001,22(2):141-155.
  • 5Cho S H, Eppinger S D. A Simulation-based process model for managing complex design projects[J].IEEE Transactions on Engineering Management, 2005,52(3):316-328.
  • 6Xu Duo, Yan Hong-sen S. An intelligent estimation method for product design time[J].The International Journal of Advanced Manufacturing Technology, 2006,30(7):601-613.
  • 7Yan Hong-Sen, Xu Duo. An approach to estimating product design time based on fuzzy υ-Support vector machine[J].IEEE Transactions on Neural Networks, 2007,18(3):721-731.
  • 8Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. 1995:1942-1948.
  • 9Eberhart R C, Shi Y. Particle swarm optimization:Developments, applications and resources[C]// Proceedings of the 2001 Congress on Evolutionary Computation. 2001:81-86.
  • 10陈冬宇,邱菀华,杨青,杨敏.基于DSM的复杂产品开发流程优化遗传算法[J].控制与决策,2008,23(8):910-914. 被引量:10

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部