期刊文献+

还原响应型K5多糖胶束药物载体的研究 被引量:4

Preparation and Properties of the Redox-Sensitive K5Polysaccharide Micelles as Drug Carrier
下载PDF
导出
摘要 为了解决传统抗肿瘤药物阿霉素水溶性不佳,对机体选择性差的情况,设计了一种还原敏感的K5胶束药物载体。将脱氧胆酸(DOCA)通过双硫键与K5多糖连接,制备两亲性K5PSSS-DOCA(KSD)缀合物。该缀合物在水溶液中可自组装形成胶束并包载模型药物阿霉素(DOX)。胶束形貌通过透射电镜进行观测,并进一步通过动态光散射测定其水合粒径及ζ-电位。胶束为球形,其水合粒径和ζ电位在载药前分别为225nm与-31mV,载药后为241nm与-31mV,具有较好的稳定性。该胶束在谷胱甘肽(GSH)存在条件下,可表现出明显的还原响应药物释放行为。细胞实验结果证实,载体材料有良好的生物相容性,含药胶束对肿瘤细胞的半数抑制浓度(IC50)低于正常细胞,对肿瘤细胞有明显选择性。 To overcome the poor water solubility or lack of tumor-targeting of Doxorubicin(DOX),we designed and fabricate the redox-sensitive K5 polysaccharide micelles as drug carrier,methods:An amphiphilic K5PS-SS-DOCA(KSD) conjugate was designed and prepared by covalently coupling deoxycholic acid(DOCA) with K5 polysaccharide(K5PS) via disulfide bonds. The conjugate could self-assemble into micelles in aqueous solution and encaspulate model drug DOX.The morphology of the micelles was observed by TEM,and the size and ζ-potential were measured by DLS. Results:The micelles were of spherical shape. The average size and ζ-potential was 225 nm and-31mV for the micelles,and 241nm and-31mV for the DOX-loaded micelles,showing favorable stability. The DOX-loaded micelles could behave redox-sensitive drug release behavior in the solution containing 10m M GSH. In vitro cytotoxicity showed that the bare micelles were biocompatible and DOX-loaded KSD micelles were more cytotoxic against tumor cells than normal cells.
机构地区 江南大学药学院
出处 《食品与生物技术学报》 CAS CSCD 北大核心 2015年第1期34-39,共6页 Journal of Food Science and Biotechnology
基金 国家自然科学基金项目(51303068) 教育部博士点基金项目(20110093110008) 江苏省自然科学基金项目(BK2012557) 武汉大学生物医用高分子材料教育部重点实验室开放基金项目(20110401)
关键词 K5多糖 胶束 还原响应 药物传递 阿霉素 K5 polysaccharide micelles redox sensitive drug delivery doxorubicin
  • 相关文献

参考文献15

  • 1Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery:design, characterization and biological significance [J]. Adv Drug Deriver Rev, 2001,47 ( 1 ) : 113-131.
  • 2Nishiyama N, Kataoka K. Current state ,achievements ,and future prospects of polymeric micelles as nanocarriers for drug and gene delivery[J]. Pharmacol Therapeut, 2006,112 (3) : 630-648.
  • 3Richter A W,Akerblom E. Polyethylene glycol reactive antibodies in man :titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo,and in healthy blood donors [J]. lilt Arch Allergy Imm, 1984,74( 1 ) :36-39.
  • 4Baldwin A D, Kiick K L. Polysaccharide-modified synthetic polymeric biomaterials[J]. J Pept Sci, 2010,94 ( 1 ) : 128-1240.
  • 5Mizrahy S, Peer D. Polysaccharides as building blocks for nanotherapeutics[J]. Chem Soe Rev, 2012,41:2623-2640.
  • 6XU Z P,ZENG Q H,LU G,et al. Inorganic nanoparticles as carriers for efficient cellular delivery [J]. Chem Eilg Sci,2006,61 (3) : 1027-1240.
  • 7赵雷,严子琴,王畅,钟卫鸿.大肠杆菌K5产肝素前体heparosan的研究进展[J].生物技术进展,2011,1(3):195-200. 被引量:5
  • 8王小元,宋鸿军.细菌内毒素的生物合成途径及分子结构多样性[J].食品与生物技术学报,2013,32(10):1009-1015. 被引量:4
  • 9Blundell C D,Roberts I S,Sheehan J K,et al. Investigating the molecular basis for the virulence of Escherichia coli K5 by nuclear magnetic resonance analysis of the capsule polysaccharide[J]. J Mol nicrob Biotech, 2009,17:71-82.
  • 10Raman K,Mencio C,Desai U R,et al. Sulfation patterns determine cellular interualization of heparin-like polysaccharides[J]. Mol Pharm,2013,10(d) : 1442-1449.

二级参考文献68

  • 1WANG X, Quinn P J. Lipopolysaccharide :Biosynthetic pathway and structure modification [J]. Progress in Lipid Research, 2010,49:97-107.
  • 2Ellis T N, Kuehn M J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles[J]. Microbiology Molecular Biology Review, 2010,74: 81-94.
  • 3Maeshima N,Fernandez R C. Recognition of lipid A variants by the TLR4-MD-2 receptor complex [J]. Frontiers in Cellular and Infection Microbiology, 2013 ; 3 : 3.
  • 4Opiyo S O,Pardy R L,Moriyama H. Evolution of the Kdo2-1ipid A biosynthesis in bacteria [J]. BMC Evolution Biology, 2010,10:362-375.
  • 5Williams A H,Raetz C R. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine aeyltransferase[J]. Proceedings of the National Academy of Sciences of USA, 2007,104:13543-13550.
  • 6Bating C M,Raetz C R. Crystal structure and acyl chain selectivity of Escherichia coli LpxD,the N-acyhransferase of lipid A biosynthesis[J]. Biochemistry, 2009,48 : 8672-8683.
  • 7Langklotz S, Baumann U, Narberhaus F. Structure and function of the bacterial AAA protease FtsH[J]. Biochimica et Biophysica Aeta,2012,1823:40-48.
  • 8Langklotz S, Schakermann M, Narberhaus F. Control of lipopolysaccharide biosynthesis by FtsH-mediated proteolysis of LpxC is conserved in enterobaeteria but not in all gram-negative bacteria[J]. Journal of Bacteriology,2011,193:1090-1097.
  • 9Doshi R, Ali A, Shi W, et al. Molecular disruption of the power stroke in the ATP-binding cassette transport protein MsbA [J]. The Journal of Biological Chemistry, 2013,288 : 6801-6813.
  • 10Islam S T,Eckford P D,Jones M L,et al. Proton-dependent gating and proton uptake by wzx support o-antigen-subunit antiport across the bacterial inner membrane[J]. MBio,2013,4(5 ). doi : pii : e00678-13. 10.1128/mBio.00678-13.

共引文献6

同被引文献19

  • 1Bae Y, Kataoka K. Intelligent polymeric micelles fromfunctional poly (ethylene glycol)-poly (amino acid) block copolymers [J]. Adv Drug Deliv Rev, 2009, 61 (10) : 768- 784.
  • 2Torchilin VP. Structure and design of polymeric surfactant- based drug delivery systems [J]. J Controlled Release, 2001, 73 (2-3) : 137-172.
  • 3Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents: an overview [J]. Adv Drug Deliv Rev, 2009, 61 (13) : 1177-1188.
  • 4Manzoni M, Bergomi S, Cavazzoni V. Extracellular K5 polysaccharide of Escherichia coli: production and characterization [J]. J Bioact Compat Polym, 1993, 8 (3): 251-257.
  • 5DeAngelis PL, White CL. Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D [J]. JBiol Chem, 2002, 277 (9) : 7209-7213.
  • 6DeAngelis PL. HEPtune: a process of conjugating a naturally occurring sugar molecule, heparosan, to a drug for enhanced drug delivery [ J ]. Drug Devel Deliv, 2013, 13 ( 1 ) : 34-38.
  • 7Chen J X, Zhang M, Liu W, et al. Construction of serum resistant micelles based on heparosan for targeted cancer therapy[J]. CarbohydrPolym, 2014, 110: 135-141.
  • 8Raman K, Mencio C, Desai UR, et al. Sulfation patterns determine cellular internalization of heparin-like polysaccharides [J]. Mol Pharm, 2013, 10 (4) : 1442-1449.
  • 9Chen JX, Liu W, Zhang M, et al. Heparosan based negatively charged nanocarrier for rapid intracellular drug delivery [J]. lntJPharm, 2014, 473 (1-2): 493-500.
  • 10Dong DW, Xiang B, Gao W, et al. pH-Responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells [J]. Biomaterials, 2013, 34 (20) : 4849-4859.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部