摘要
嘉陵江草街水库自建成后2011-2013年连续3年发生甲藻水华现象,给当地经济发展和生态安全带来影响.根据2011年5月至2013年7月草街水库大坝上、下游8个断面的逐月调查数据,利用支持向量机在处理小样本问题、非线性分类问题和泛化推广方面的优势,构建了基于支持向量机分类的草街水库甲藻水华预警模型.结果表明,利用本月理化数据和本月倪氏拟多甲藻(Peridiniopsis niei)密度数据建立的模型,对测试样本取得了80%以上的判别正确率,且对甲藻水华样本的判别正确率为100%.因此,支持向量机作为新兴的机器学习方法,可以为环境管理部门发布水华预警信息提供科学依据,并在环境保护领域具有广阔的应用前景.
Dinoflagellate bloom consecutively occurred in Caojie Reservoir from 2011 to 2013 and threatened the local economy and ecology. Recently,support vector machine( SVM) was reported to have advantages of only requiring a small amount of samples,high degree of prediction accuracy,and generalization to solve the nonlinear classification problems. In this study,the SVM-based prediction model for dinoflagellate bloom was established by monthly field date collected from May 2011 to July 2013 at 8 transects in Caojie Reservoir. The maximum accuracy excessed 80% by choosing environmental variables data and Peridiniopsis niei abundance of current month,and accuracy arrived at 100% for dinoflagellate bloom samples. The results showed that the SVM classification is an effective new way that can be used in monitoring dinoflagellate bloom in Caojie Reservoir and have a promising application prospect for environmental protection.
出处
《湖泊科学》
EI
CAS
CSCD
北大核心
2015年第1期38-43,共6页
Journal of Lake Sciences
基金
重庆市环境保护局环保科技项目(环科字2012第02号)
重庆市基本科研业务费计划项目(2013cstc-jbky-01604)联合资助
关键词
支持向量机
甲藻水华
草街水库
倪氏拟多甲藻
Support vector machine
dinoflagellate bloom
Caojie Reservoir
Peridiniopsis niei