期刊文献+

一般线性李代数和有限维单李代数的抛物子代数上非线性强交换映射

Nonlinear Strongly Commuting Maps on Parabolic Subalgebras of General Linear Lie Algebras and Finite-dimensional Simple Lie Algebras
原文传递
导出
摘要 设F为域且char F≠2,L为域F上李代数.L上的一个映射φ:L→L称为非线性强交换映射,如果对任意的x,y∈L,有[φ(x),y]=[x,φ(y)].当P为一般线性李代数gl(n,F)(n≥2)的抛物子代数时,证明了P上映射φ为非线性强交换映射当且仅当φ是P上数乘映射与中心映射之和;又当P是有限维单李代数L的抛物子代数时,证明了P上映射φ是非线性强交换映射当且仅当φ是P上数乘映射. Let F be a field whose characteristic is not equal to 2,L a Lie algebra over F.A map φ on L is called a nonlinear strongly commuting map,if for any x,y ∈ L,[φ( x),y] = [x,φ( y) ].If P is a parabolic subalgebra of a general linear Lie algebra gl( n,F)( n ≥2),it is shown that any nonlinear strongly commuting map on P is a sum of a scalar multiplication map and a central quasiderivation.And if P is a parabolic subalgebra of a finite dimensional simple Lie algebra L over F,it is shown that any nonlinear strongly commuting map is a scalar multiplication map.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期1-6,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11101084) 福建省自然科学基金资助项目(2013J01005)
关键词 非线性强交换映射 抛物子代数 一般线性李代数 有限维单李代数 nonlinear strongly commuting map parabolic subalgebra general linear Lie algebra finite-dimensional simple Lie algebra
  • 相关文献

参考文献2

二级参考文献29

  • 1Humphreys E. Introduction to Lie algebras and representation theory [ M]. New York: Springer-verlag, 1973.
  • 2Wang Dengyin, Chen Zhengxin. Quasi-automorphisms of Lie algebras [J]. Corn Alg, 2010, 39 (7) : 2388 -2395.
  • 3Wang Dengyin, Chen Zhengxin. Invertible linear maps on simple Lie algebras preserving commutativity [ J ]. Pro Amer MathSoc, 2011, 39:3881-3893.
  • 4Wang Dengyin, Zhao Yanxian, Chen Zhengxin. Nonlinear invertible maps on simple Lie algebras preserving Lie products [J]. ComAlg, 2011, 39: 424-434.
  • 5Liau Paokuei, Huang Weilu, Liu Chengkai. Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution [J]. Lin Alg Appl, 2011, 436 (9) : 3099 -3108.
  • 6Leger G F, Luks E M. Generalized derivations of Lie algebras [J]. J Algebra, 2000 (228) : 165 -203.
  • 7Matej Bresar. Near-derivations in Lie algebra [ J ]. J Algebra, 2008 (320) : 3765 - 3772.
  • 8Li Hailing, Wang Ying. Generalized Lie triple derivations [ J]. Lin Mul Alg, 2011, 59:237 -247.
  • 9Wang Dengyin, Yu Xiaoxiang. Lie triple derivations on the parabolic subalgebras of simple Lie algebras [ J ]. Lin Mul Alg, 2011, 59 : 837 - 840.
  • 10Wang Dengyin, Yu Xiaoxiang, Chen Zhengxin. A class of zero product determined Lie algebras [J]. J Algebra, 2011 (331): 145 -151.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部