摘要
设F为域且char F≠2,L为域F上李代数.L上的一个映射φ:L→L称为非线性强交换映射,如果对任意的x,y∈L,有[φ(x),y]=[x,φ(y)].当P为一般线性李代数gl(n,F)(n≥2)的抛物子代数时,证明了P上映射φ为非线性强交换映射当且仅当φ是P上数乘映射与中心映射之和;又当P是有限维单李代数L的抛物子代数时,证明了P上映射φ是非线性强交换映射当且仅当φ是P上数乘映射.
Let F be a field whose characteristic is not equal to 2,L a Lie algebra over F.A map φ on L is called a nonlinear strongly commuting map,if for any x,y ∈ L,[φ( x),y] = [x,φ( y) ].If P is a parabolic subalgebra of a general linear Lie algebra gl( n,F)( n ≥2),it is shown that any nonlinear strongly commuting map on P is a sum of a scalar multiplication map and a central quasiderivation.And if P is a parabolic subalgebra of a finite dimensional simple Lie algebra L over F,it is shown that any nonlinear strongly commuting map is a scalar multiplication map.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第2期1-6,共6页
Journal of Fujian Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11101084)
福建省自然科学基金资助项目(2013J01005)
关键词
非线性强交换映射
抛物子代数
一般线性李代数
有限维单李代数
nonlinear strongly commuting map
parabolic subalgebra
general linear Lie algebra
finite-dimensional simple Lie algebra