期刊文献+

三维变系数热传导问题边界元分析中几乎奇异积分计算 被引量:7

Evaluation of nearly singular integrals in boundary element analysis of 3D heat conduction problem with variable coefficients
下载PDF
导出
摘要 在边界积分的数值计算过程中,当源点离积分单元很近时,边界积分就会具有几乎奇异性,此时不能直接用高斯数值积分公式计算几乎奇异积分。本文以三维非均质热传导问题为例,介绍了一种计算几乎奇异边界积分的新方法。首先,采用Newton-Raphson迭代算法确定积分单元上离源点最近的点;然后,将积分单元上任意一点的坐标在最近点处展开成泰勒级数,并计算源点到积分单元任意点的距离;最后,将距离函数代入几乎奇异边界积分中,并运用指数变换方法导出积分单元上几乎奇异积分的计算公式。文中给出了两个非均质热传导问题的算例来验证所述方法的正确性、有效性和稳定性。 When the source point is very close to the integrated element in the numerical evaluation of boundary integrals, nearly singularity will appear in the boundary integrals, which results in that the integral can't be calculated directly by using the Gaussian quadrature formulas. A new method for evaluating the nearly singular boundary integral is presented in the paper based on 3D non-homogeneous heat conduction problems. In the proposed method,the Newtonaphson iteration algorithm is adopted to determine the point on the boundary element which is closest to the source point; and then the distance from the source point to any point on the element is calculated by expanding the coordinates at the point as Taylor series of the closet point; finally, the integration formula for evaluation of the nearly singular boundary integral is derived by substituting the distance function into the nearly singular boundary inte- gral and using the exponential transform method. Two numerical examples for 3D non-homogeneous heat conduction problems are given to verify the correctness, effectiveness and stability of the presented method.
出处 《计算力学学报》 CAS CSCD 北大核心 2015年第1期7-13,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11172055 51206014)资助项目
关键词 边界单元法 几乎奇异积分 热传导 指数变换 牛顿-拉夫森迭代 BEM Nearly singular integral Heat conduction exponential transform Newton-Raphson iteration
  • 相关文献

参考文献18

  • 1Ghosh N,Rajiyah H,Ghosh S,et al. A new boundary element method formulation for linear elasticity[J]. Journal of Applied Mechanics, 1986,53(1) : 69-76.
  • 2Haekbuseh W,Sauter S A. On numerical cubatures of nearly singular surface integrals arising in BEM collo- eation[J]. Computing, 1994,52(2) : 139-159.
  • 3Hayami K, Matsumoto H. A numerical quadrature for nearly singular boundary element integrals[J]. Engi- neering Analysis with Boundary Elements, 1994, 13(2) : 143-154.
  • 4Johnston B M,Johnston P R, Elliott D. A sinh trans- formation for evaluating two-dimensional nearly sin- gular boundary element integrals [J]. International Journal for Numerical Methods in Engineering, 2007,69(7) : 1460-1479.
  • 5Scuderi L. On the computation of nearly singular inte- grals in 3D BEM collocation[J]. International Jour- nal for Numerical Methods in Engineering, 2008, 74(11) :1733-1770.
  • 6Wenjing Y. A new transformation technique for eval- uating nearly singular integrals [J]. Computational Mechanics, 2008,42(3) : 457-466.
  • 7Ma H,Kamiya N. Distance transformation for the nu- merical evaluation of near singular boundary integrals with various kernels in boundary element method[J]. Engineering Analysis with Boundary Elements, 2002,26(2) : 329-339.
  • 8Ma H,Kamiya N. A general algorithm for the nume- rical evaluation of nearly singular boundary integrals of various orders for two-and three-dimensional elas- ticity[J ]. Computational Mechanics, 2002,29 ( 4-5 ) : 277-288.
  • 9Ma H,Kamiya N. Distance transformation for the nu- merical evaluation of near singular boundary integralswith various kernels in boundary element method[J]. Engineering Analysis with Boundary Elements, 2002,26(4) : 329-339.
  • 10张耀明,孙翠莲,谷岩.边界积分方程中近奇异积分计算的一种变量替换法[J].力学学报,2008,40(2):207-214. 被引量:15

二级参考文献58

  • 1董春迎,谢志成,姚振汉,杜庆华.边界积分方程中超奇异积分的解法[J].力学进展,1995,25(3):424-429. 被引量:7
  • 2张耀明,吕和祥,王利民.位势平面问题的新的规则化边界积分方程[J].应用数学和力学,2006,27(9):1017-1022. 被引量:12
  • 3Luo J F, Liu Y J, Berger E. Interfaeial stress analysis for multi-coating systems using an advanced boundary element method [J ]. Computational Mechanic, 2000,24 : 448-455.
  • 4Luo J F, Liu Y J, Berger E. Analysis of two-dimensional thin-structures (from micro-to nano-seales) using the element method[J]. Computational Mechanics, 1998,22 : 404-412.
  • 5Dong Chun-ying, BonnetT M. An integral formulation for steady-state elastoplastic contact over a coated half-plane [J ]. Computational Mechanics, 2002, 28:105-121.
  • 6Brebbia C A. Progress in Boundary Element Method [C]. New York, Spring-verlag, 1984.
  • 7Niu Z R, Wendland W L, Wang X X, et al. A semianalytical algorithm for the evaluation of the nearly singular integrals in three-dimensional boundary element methods[J]. Comput Methods Appl Mech Engrg, 2005,194 :1057-1074.
  • 8Gao X W, Davies T G. 3D multi-region BEM with corner and edges[J]. International Journal of Solids and Structures ,2000,37: 1549-1560.
  • 9Gao X W, Guo L, Zhang C H. Three-step multi-domain BEM solver for nonhomogeneous material problems[J]. Engineering Analysis with Boundary Elements, 2007,31 : 965-973.
  • 10Liu Y G. A fast multipole boundary element method for 2D multi-domain elastostatie problems based on a dual BIE formulation[J]. Computational Mechanics, 2008. (in Press).

共引文献30

同被引文献50

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部