期刊文献+

基于选择性神经网络集成的地基云状识别算法 被引量:4

GROUND NEPHOGRAM RECOGNITION ALGORITHM BASED ON SELECTIVE NEURAL NETWORK ENSEMBLE
下载PDF
导出
摘要 针对传统地基云图云状识别模型精度较低的问题,提出一种基于K均值算法的选择性神经网络集成的方法。该方法以BP神经网络集成模型为基础,采用K均值聚类算法选择部分有差异性的个体神经网络进行集成,建立了云状分类模型。通过对云图样本进行仿真实验,结果表明所提出的算法相对于单个BP神经网络及传统的BP_AdaBoost集成算法用于云图的分类,能有效地提高云图识别分类的精度。 In view of the low accuracy of traditional ground nephogram recognition model,the authors put forward a k-means algorithmbased selective neural network ensemble method,which takes BP neural network ensemble model as the basis,uses k-means algorithm to choose the individual neural networks with partial diversities for integration,and builds the cloud form classification model. Through simulation experiments on ground nephogram samples,the results show that the algorithm proposed in the article can effectively improve the classification accuracy of ground nephogram recognition in comparison with applying single BP neural network and traditional BP_Ada Boost ensemble algorithm on classification of ground nephogram.
作者 鲁高宇 李涛
出处 《计算机应用与软件》 CSCD 2015年第3期185-187,232,共4页 Computer Applications and Software
基金 公益性行业(气象)科研专项项目(GYHY201306070)
关键词 云状 K均值 BP神经网络 ADABOOST算法 Cloud form K-means BP neural network AdaBoost algorithm
  • 相关文献

参考文献13

  • 1杨健,薛峰,宋志刚,沈彦燕.基于图像处理技术的地基云图云状的识别[J].气象水文海洋仪器,2008,25(3):67-71. 被引量:10
  • 2Maneesha Singh,Matt Glenen.Automated ground-based cloud recognition[J].Theoretical Advances,2005,8(3):258-271.
  • 3Tom M Mitchell.Machine Learning[M].American:McG rawHill,2003.
  • 4Bangyal W H,Ahmad J,Abbas Q.Analysis of learning rate using BP algorithm for hand written digit recognition application[C].Karachi:Information and Emerging Technologies,2010.
  • 5周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:245
  • 6吴建鑫,周志华,沈学华,陈兆乾.一种选择性神经网络集成构造方法[J].计算机研究与发展,2000,37(9):1039-1044. 被引量:27
  • 7余丽萍,黎明,杨小芹,刘君.基于灰度共生矩阵的断口图像识别[J].计算机仿真,2010,27(4):224-227. 被引量:26
  • 8Chris Ebey Honeycutt,Roy Plotnick.Image analysis techniques and graylevel co-occurrence matrices for calculating bioturbation indices and characterizing biogenic sedimentary structures[J].Computers&Geosciences,2008,11(34):1461-1472.
  • 9Kekre H B,Suddp D Thepade,Tanuja K Sarode,et al.Image Retrieval using Texture Features extracted from GLCM,LBG and KPE[J].Internation Journal of Computer Theory and Engineering,2010,2(5):695-700.
  • 10Haralick R M,Shanmugam K,Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems,Man,Cybernetics SMC,1973,3(6):610-621.

二级参考文献26

  • 1李沁,田沛,吴保炜,高云霞.应用分形进行金属断口的识别分类[J].仪器仪表与分析监测,2005(4):19-21. 被引量:3
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3薛巨峰,范东溟,隋鑫.适于描述木材纹理的灰度共生矩阵构造方法研究[J].林业机械与木工设备,2007,35(6):19-21. 被引量:3
  • 4K Komai, K Minoshima. Applications of Image Processing Technique to Fractography [ J]. J. Jpn. Inst. Light Met., 1992, 42:537.
  • 5K Komai, K Minoshima, S Ishii, Recognition of Different Fracture Surface Morphologies Using Computer Image Processing Technique [J]. JSME. Int. J. ,Ser. A, 1993, 36(2) :220.
  • 6K Minoshi, T. Nagosaki. Automatic Classification of Fracture Surface Morphology Using Computer Image Processing Technique[ J]. Jpn. Soe. Mesh. Eng., 1993. 373.
  • 7M H Bharati, J J Liu, G Mac. Image texture analysis: methods and comparisons[ J]. Chemo metrics & Intelligent Laboratory Systems, 2004,72( 1 ) :57 -65.
  • 8Anil K Jain. Statistical Pattern Recognition A Review[ J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, January 2000, 22(1) :4 -37.
  • 9J Kamruzzaman, Y Kumagai, S Mahfuzul Ariz. Character recognition by double backpropagation neural network [ C ]. Proceedings of IEEE Region 10 Annual Conference Speech and Image Technologies for Computing and Telecommunications. 1997,22 (1) :411 -414.
  • 10Liu Y,IEEE Transactions Systems Manand Cybernetics.B,1999年,29卷,6期,716页

共引文献511

同被引文献8

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部