期刊文献+

基于动态约简的增量贝叶斯分类算法的研究 被引量:2

ON INCREMENTAL NAVE BAYESIAN CLASSIFICATION ALGORITHM BASED ON DYNAMIC REDUCTION
下载PDF
导出
摘要 朴素贝叶斯由于条件独立性假设使其分类效果不明显,同时在处理海量数据时缺乏灵活性。针对以上情况,提出一种基于动态约简的增量贝叶斯分类算法。算法首先利用(F-λ)广义动态约简计算出数据集的核属性,然后根据训练集的先验信息构造分类器对测试实例进行分类,最后利用类置信度进行选择性增量学习,增强处理增量数据的能力。实验结果表明,该算法在处理属性少的小量数据时,分类效果有一定的改善,在处理多属性大量数据时,分类效果明显提高。 The classification effect of nave Bayesian is not obvious because of conditional independence assumption,so does its lack of flexibility in dealing with massive data. In view of the above,we propose a dynamic reduction-based incremental nave Bayesian classification algorithm. This algorithm uses( F-λ) generalised dynamic reduction to calculate the core attributes of dataset first,and then constructs classifier according to priori information of training sets to classify the test cases. Finally, it uses class confidence to conduct selective incrementallearning for enhancing the capability of incremental data processing. Experimental results show that the algorithm ameliorates the classification effect to a certain extent when dealing with few attributes and small amount of data,and when dealing with more attributes and large amount of data,the classification effect is obviously improved as well.
出处 《计算机应用与软件》 CSCD 2015年第3期188-191,共4页 Computer Applications and Software
基金 教育部人文社会科学研究项目(10YJAZH069) 江苏省第九批"六大人才高峰"高层次人才项目(XXRJ-013)
关键词 粗糙集 动态约简 增量学习 朴素贝叶斯 Rough set Dynamic reduction Incremental learning Naïve Bayesian
  • 相关文献

参考文献11

二级参考文献57

共引文献78

同被引文献19

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部