期刊文献+

带自适应整定参数的机器人达尔文粒子群优化算法

Robot Darwinian Particle Swarm Optimization with Self-adaptive Tuning Parameters
下载PDF
导出
摘要 对基数庞大的机器人群族引入达尔文粒子群优化算法(DPSO)。该算法将自然选择应用到粒子群算法中,对整个机器人群族进行动态分割,根据上下文评价指标配合机器人行为对机器人的行为进行预测,提高了机器人群族运动的最优逃脱方案成功率。仿真试验表明,通过对该算法的输入参数进行自适应整定,可以改进系统的收敛率,增加通信的约束,使整个机器人群族在未来更大的范围内有效驱动数量更大的无线机器人群族。 The Darwinian particle swarm optimization ( DPSO ) is introduced in the robots swarm with tremendous cardinality. The algorithm applies natural choice in particle swarm algorithm, dynamically divides the entire robots swarm, and predicts the behavior of robots according to the context evaluation indicator with robot' s behavior, to increase the optimal escape rate of the motion of robots swarm. The simulation tests show that through adaptive tuning of the input parameters of the algorithm, the convergence rate of the system can be improved, the communication constrain is increased, which lead to larger wireless robots swarm can be efficiently driven by entire robots swarm in larger scope in the future.
作者 余志鹏
出处 《自动化仪表》 CAS 2015年第3期81-85,共5页 Process Automation Instrumentation
关键词 RDPSO 机器人群族 上下文评价 自适应 感知能力 Robot Darwinian particle swarm optimization(RDPSO) Robot swarm Context evaluation Self-adaption Sensory ability
  • 相关文献

参考文献14

  • 1James K,Russel E.A new optimizer using particle swarm theory[ C]// Proceedings of the IEEE Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan ,1995:39-43.
  • 2Jim S, Robert M. A survey of animal foraging for directed, persistent search by rescue robotics [ C ]//Proceedings of the 2011 IEEE International Symposium on Safety, Security and Rescue Robotics, Kyoto,Japan,2011:314-320.
  • 3Lino M, Urbano N,Almeida A. Particle swarm-based olfactory guided search Autonomous Robots,2006,20 (3) :277-287.
  • 4Maurice C, James K. The particle swarm--explosion, stability, and convergence in a multidimensional complex space [ J ]. IEEE Transactions on Evolutionary Computation,2002,6 ( 1 ) :58-73.
  • 5Kellchiro Y,Nobuhiro I,C, enki U,et al. Particle swarm optimization: a numerical stability analysis and parameter adjustment based on swarm activity [ J ]. IEEJ Transactions on Electrical and Electronic Engineering,2008 (3) :642-659.
  • 6Yuhui Shi,Russel E. Fuzzy adaptive particle swarm optimization[ C ]// Proceedings of IEEE Computer,2001:101-106.
  • 7Liu Hongbo, Abraham A. A fuzzy adaptive turbulent particle swarm optimization[J]. International Joumal of Innovative Computing and Applications,2007,1 ( 1 ) :39-47.
  • 8张立川,徐德民,刘明雍,严卫生.基于移动长基线的多AUV协同导航[J].机器人,2009,31(6):581-585. 被引量:33
  • 9Micheal S, Couceiro R, Roeha N M. Ferreira. Ensuring Ad Hoe connectivity in distributed search with Robotic Darwinian swarms [ C ]//Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR2011, Kyoto, Japan, 2011 : 284-289.
  • 10Micheal S, Couceiro S, Fernando M L. Analysis and parameter adjustment of the RDPSO--towards an understanding of robotic network dynamic partitioning based on Darwin ' s theory [ J ]. International Mathematical Forum ,2012,7 (32) 1587-1601.

二级参考文献14

  • 1衣晓,何友,关欣.多模型算法在协同定位中的应用[J].武汉大学学报(信息科学版),2004,29(8):732-735. 被引量:4
  • 2彭锐晖,王国宏,陈士举,袁健全.两弹协同定位的可行性研究[J].系统仿真学报,2006,18(5):1118-1122. 被引量:10
  • 3王玲,邵金鑫,万建伟,刘云辉.多机器人定位中基于熵的分布式观测量选择方法[J].电子学报,2007,35(2):333-336. 被引量:9
  • 4许真珍,封锡盛.多UUV协作系统的研究现状与发展[J].机器人,2007,29(2):186-192. 被引量:47
  • 5王玲,刘云辉,万建伟,邵金鑫.基于相对方位的多机器人合作定位算法[J].传感技术学报,2007,20(4):794-799. 被引量:25
  • 6Maczka D K, Gadre A S, Stilwell D J. Implementation of a cooperative navigation algorithm on a platoon of autonomous underwater vehicles[C]//Oceans Conference Record. Piscataway, NJ, USA: IEEE, 2007: 1922-1927.
  • 7Curcio J, Leonard J, Valganay J, et al. Experiments in moving baseline navigation using autonomous surface craft[C]//Oceans Conference Record. Piscataway, NJ, USA: IEEE, 2005: 730- 735.
  • 8Eustice R M, Whitcomb L L, Singh H, et al. Recent advances in synchronous-clock one-way-travel-time acoustic navigation[C]// Oceans Conference Record. Piscataway, NJ, USA: IEEE, 2006: 1431-1436.
  • 9Reeder C A, Odell D L, Okamoto A, et al. Two-hydrophone heading and range sensor applied to formation-flying for AUVs[C]//MTS/IEEE Techno-Ocean'04. Piscataway, NJ, USA: IEEE, 2004: 517-523.
  • 10Roumeliotis S I, Rekleitis I M. Analysis of multirobot localization uncertainty propagation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2003: 1763-1770.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部