摘要
将小脑模型关节控制器(CMAC)神经网络应用于动载体光电稳定跟踪控制系统设计,分别构建CMAC学习算法网络和CMAC控制网络,泛化参数取4,采用δ学习算法调整网络权值,为评估所构建的CMAC网络对目标系统的逼近能力,选定一个非线性系统作为对象,以连续方波为输入信号进行仿真。仿真数据显示,输入信号发生跳变经0.15s后输出信号的稳态误差为0。选用直流力矩电机和分辨率为767×10-6 rad的光电编码器构建动载体三轴姿态稳定控制实验装置。结果表明,构建的以CMAC神经网络为核心的控制器在此实验装置上实现的姿态稳定误差为870×10-6 rad。
The cerebellar model articulation controller (CMAC) neural network is applied to the design for photoelectric stable tracking control system of motorial carrier ,respectively constructing “CMAC network learning algorithm” and “CMAC control network” .The generalization parameter is 4 ,and the learning algorithm δis used to adjust to the network weights .In order to assess the approximation ability of the CMAC network to built a target system ,a nonlinear system is selected as the object .The input signal is continuous square wave and simulated .The simulation data shows that the input signal has changed after 0.15 seconds and the steady‐state error of the output signal is 0 .Using DC torque motor and resolution of 767 × 10-6 rad of photoelectric encoder ,it builds a three‐axis attitude stability control experimental device of motorial carrier .The result shows that controller based on CMAC neural network is constructed which can realize attitude stabilization error as 870 × 10-6 rad in this experiment device .
出处
《黑龙江工程学院学报》
CAS
2015年第1期27-31,共5页
Journal of Heilongjiang Institute of Technology
基金
黑龙江省自然科学基金资助项目(E201141)
关键词
三轴光电跟踪系统
姿态稳定技术
动载体
小脑模型关节控制器
神经网络
three-axis photoelectric tracking system
attitude stabilization technology
motorial carrier
Cerebellar Model Articulation Controller(CMAC)
intelligent control
neural network