期刊文献+

具避难所和临界捕获的离散捕食-食饵系统研究

Dynamics of discret prey-predator system with prey threshold harvesting and refuge
下载PDF
导出
摘要 提出一类新的具避难所和临界捕获的离散捕食-食饵系统,通过分析特征值的算子获得捕食前后不动点存在和稳定的条件. The dynamics of discret prey-predator system with prey threshold harvesting and refuge is studied. By analysis of the characteristic value of operator,we obtained the conditions for the existence and stability of fixed points with prey threshold harvesting.
出处 《闽江学院学报》 2015年第2期19-23,共5页 Journal of Minjiang University
基金 福建省教育厅科技项目(JA12369)
关键词 捕食-食饵系统 避难所 食饵临界捕获 离散 prey-predator system discrete threshold harvesting refuge
  • 相关文献

二级参考文献12

  • 1王琳琳.自治HollingⅢ类功能性反应的捕食-食饵系统的定性分析[J].西北师范大学学报(自然科学版),2005,41(1):1-6. 被引量:10
  • 2Chen F D. Permanence in a discrete Lotka-Voherra competition model with deviating arguments [ J ]. Nonlinear Analysis:Real World Applications,2008 (9) :2 150 - 2 155.
  • 3Chen F D. Periodic solutions of a delayed predator-prey model with stage structure for predator[J]. Journal of Applied Mathematics, 2005(2) : 153 - 169.
  • 4Chen F D, Shi J I. On a delayed nonautonomous ratio-dependent predator-prey model with holling type functional response and diffusion [ J ]. Applied Mathematics and Computation, 2007, 192 (2) : 358 - 369.
  • 5Chen F D. Permanence and global stability of nonautonomous Lotka - Volterra system with Predator - prey and deviating arguments [ J ]. Appl Math Comput,2006,173 : 1 082 - 1 100.
  • 6Hassell M P, Comins H N. Discrete time models for two- species competition[J]. Theoret Populat Biol, 1976(99) :202 -221.
  • 7Jiang H, Rogers T D. The discrete dynamics of symmetric competition in the plane[J]. Math Biol,1987 (25) :573 -596.
  • 8Saito Y, Ma W, Hara T. A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays [ J ]. Math Anal Appl,2001 (256) : 162 - 174.
  • 9吴亭.非自治Lotka-Volterra两种群合作系统的持久性[J].科技通报,2009,25(6):743-746. 被引量:7
  • 10吴亭.一类具有Beddington-DeAngelis功能反应的离散竞争反馈控制系统的持久性与稳定性[J].闽江学院学报,2010,31(2):16-20. 被引量:7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部