期刊文献+

椭圆型最优控制问题中的L^(1,2)-方向稀疏

L^(1,2)-Directional Sparsity of Elliptic Optimal Control Problems
下载PDF
导出
摘要 介绍一种带有L1,2-方向稀疏项的椭圆型最优控制问题,分析条纹稀疏模式,从理论角度研究该问题的一阶最优性条件。为解决不可微控制问题,基于广义微分,提出一个半光滑牛顿方法,将问题在泛函空间中进行表示和分析,并具有局部超线性收敛率。 The elliptic optimal control problems with L1,2-directional sparsity are introduced and the stripe sparse mode is analyzed. Emphatically,the first-order optimality conditions of the problem are studied from the theory angle. For solving the non-differentiable control problem,a semi-smooth Newton method based on the generalized differential is proposed,with which the problem can be stated and analyzed in the functional space and has local superlinear convergence rate.
作者 严春梅 张维
出处 《四川理工学院学报(自然科学版)》 CAS 2015年第1期76-79,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 方向稀疏 非光滑正则化 半光滑牛顿 directional sparsity non-smooth regularization semi-smooth Newton
  • 相关文献

参考文献11

  • 1Nikolova M.Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized leastsquares[J].Multiscale Model,2005,4(3):960-991.
  • 2Troltzsch F.Optimal Control of Partial Differential Equations:Theory,Methods and Application[M].Providence:American Mathematical Society,RI,2010.
  • 3Clason C,Kunisch K.A duality-based approach to elliptic control problems in nonreflexive Banach space[J].ESAIM Control Optimal,2011(17):243-266.
  • 4Wachsmuth G,wachsmuth D.Cocergence and regularization results for optimal control problems with sparsity functional[J].ESAIM Control optimal,2011(17):858-886.
  • 5Casas E,Herzog R,Wachsmuth G.Optimality conditions and error analysis of semilinear elliptic control problems with L1 cost functional[J].SIAM J,Optimal,2012,22(3):795-820.
  • 6Herzog R,Stadler G,Wachsmuth G.Directional sparsity in optimal control of partial differential equations[J].SIAM Journal on Control and Optimization,2012,50(2):943-963.
  • 7Troltzsch V F,Wiesbaden.Optimal Steuerung partieller Differential gleichungen[M].Wiesbaden:Vieweg,2005.
  • 8Sun D,Han J.Newton and quasi-Newton methods for a class of nonsmooth equations and related problems[J].SIAM J.Optimal,1997(7):463-480.
  • 9Hintermüller M I,Kunisch K.The primal-dual active set strategy as a semi-smooth Newton method[J].SIAM J.Optimal,2003,13(3):865-888.
  • 10Davis T A,Hager W W.A sparse proximal implementation of the LP dual active set algorithm[J].Math.Program-Mathematical Programming,2008,112(2):275-301.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部