摘要
介绍一种带有L1,2-方向稀疏项的椭圆型最优控制问题,分析条纹稀疏模式,从理论角度研究该问题的一阶最优性条件。为解决不可微控制问题,基于广义微分,提出一个半光滑牛顿方法,将问题在泛函空间中进行表示和分析,并具有局部超线性收敛率。
The elliptic optimal control problems with L1,2-directional sparsity are introduced and the stripe sparse mode is analyzed. Emphatically,the first-order optimality conditions of the problem are studied from the theory angle. For solving the non-differentiable control problem,a semi-smooth Newton method based on the generalized differential is proposed,with which the problem can be stated and analyzed in the functional space and has local superlinear convergence rate.
出处
《四川理工学院学报(自然科学版)》
CAS
2015年第1期76-79,共4页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词
方向稀疏
非光滑正则化
半光滑牛顿
directional sparsity
non-smooth regularization
semi-smooth Newton