期刊文献+

产耐盐蛋白酶深海细菌的分离鉴定 被引量:5

The Isolation and Identification of Deep-sea Bacteria That Produce Salt-tolerant Proteases
原文传递
导出
摘要 本文采用高盐富集、复筛发酵及耐盐稳定性实验的方式,从深海海泥中筛选产耐盐蛋白酶的深海海洋细菌。从深海海洋微生物中共筛选出25株耐盐菌,在这25株菌株中有14株在酪蛋白平板上能产生较大的水解圈;通过发酵复筛及耐盐稳定性实验,筛选得到一株酶活性能高且耐盐稳定性好的菌株,将其编号为SWJSS3;对菌株SWJSS3进行16SrDNA的鉴定并初步研究了盐浓度对产酶情况和酶稳定性的影响。菌株SWJSS3在0-10%(m/V)的盐浓度条件下均能生长,在0-10%的盐浓度下,菌液OD600的吸光值范围为0.08-1.98;通过发酵复筛其所产生的蛋白酶酶活在盐浓度为1%时达最高,为233.56±2.16U/mL;所产蛋白酶在终浓度为15%(m/V)的NaCl溶液下,混匀4℃保存1h,残余酶活为初始酶活的40.70±2.06%,继续存放一段时间到第9h,酶活基本保持不变;通过16SrDNA鉴定其为铜绿假单胞菌,与PseudomonasaeruginosaRP2816SrDNA的相似性达到99%以上。 This study was aimed at screening deep-sea bacteria that produce salt-tolerant proteases from deep-sea mud samples based onhigh-salt accumulation, fermentation rescreening, and salt-tolerant stability tests. Twenty-five strains of deep-sea marine microorganisms were selected, 14 of which demonstrated an increase inhydrolysis cycles on casein plates. A strain withhigh enzyme activity and salt stability was obtained based on fermentation rescreening and a salt-tolerance test, and was labeled as SWJSS3. Strain SWJSS3 was identified using 16S rDNA and a preliminary study on the effects of salt concentration on its protease yield and stability was conducted. The strain was able to grow in medium with salt concentrations between 0% and 10% and an OD600 of the bacterial suspension ranging from 0.08 to 1.98. The activity of proteases produced by SWJSS3 was maximal for a 1% salt concentration in the fermentation rescreening(233.56 ± 2U/mL). After treatment with 15%(final concentration) sodium chloride solution at 4 ℃ for 1h, the enzyme activity decreased to 40.70 ± 2.06% of the initial enzyme activity, but remained stable for up to 9h. strain SWJSS3 was identified as Pseudomonas aeruginosa, exhibiting 99% 16S rDNA sequence similarity to P. aeruginosa RP28.
出处 《现代食品科技》 EI CAS 北大核心 2015年第3期50-54,共5页 Modern Food Science and Technology
基金 深海微生物活性物质挖掘与其利用技术(2012AA092104) 热带海洋微生物新型耐盐特异性蛋白酶的挖掘与应用(2013418018-7) 广东省海洋经济创新发展区域示范专项(GD2012-D01-002)
关键词 深海海洋细菌 蛋白酶 耐盐稳定性 分离鉴定 deep-sea marine bacteria protease salt stability isolation and identification
  • 相关文献

参考文献11

  • 1Chi Z,Liu Z Q. Marine yeasts and their applications inmariculture [J]. Journal of Ocean University of China(English Edition), 2006, 5(3): 251-256.
  • 2Blunt J W, Copp B R, Munro M H Q et al. Marine naturalproducts [J]. Nat Prod Rep, 2011, 28: 196-268.
  • 3周世水,丁金国,姚汝华.海洋微生物药物的开发和应用[J].工业微生物,2002,32(2):48-51. 被引量:11
  • 4赵谋明,雷芬芬,钟泓波,崔春,郇惠杰.微小杆菌属SWJS2蛋白酶对鱼肉酶解特性的研究[J].现代食品科技,2014,30(2):153-158. 被引量:5
  • 5Song Q, Zhang X. Characterization of a novel non-specificnuclease from thermophilic bacteriophage GBSV1 [J]. BMCbiotechnology, 2008, 8(1): 43.
  • 6D Wang, Z Y Zheng, J Feng, et al. A high salt tolerant neutralprotease from aspergillus oryzae:purification, characterizationand kinetic properties [J]. Applied Biochemistry andMicrobiology, 2013,49(4): 378-385.
  • 7S D Gohel, S P Singh. Characteristics and thermodynamics ofa thermostable protease from a salt-tolerant alkaliphilicactinomycete [J]. International Journal of BiologicalMacromolecules, 2013,56: 20-27.
  • 8Mahadevan, Surianarayanan, Dhandapani, et al. Batch kineticstudies on growth of salt tolerant Pseudomonas aeruginosasecreting protease in a biocalorimeter [J]. Biotechnology andBioprocess Engineering, 2010,15(4): 670-675.
  • 9GB/T23527-2009,蛋白酶制剂[S].
  • 10顾瑾麟,夏永军,张红发,任婧.开菲尔粒中高产蛋白酶菌株的筛选及培养基优化[J].现代食品科技,2013,29(3):558-562. 被引量:6

二级参考文献34

  • 1SB/T10317-1999,蛋白酶活力测定[S].
  • 2刘雪莉,钱伯初.日本海洋天然活性物质研究简况[J].中国海洋药物,1997,16(1):45-49. 被引量:44
  • 3Yaowei Fang, Shu Liu, ShujunWang,etc. Isolation and screening of a novel extracellular organic solvent-stable protease producer [J]. Biochemical Engineering Journal, 2009, 43:212-215.
  • 4L. V. A. Roddy, Young-Jung Wee, Jong-Sun Yun, etc. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches[J]. Bioresource Technolo,v. 2008.99:2242-2249.
  • 5Ram Karan, S. P. Singh, Sanjay Kapoor, etc. A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology [J]. New Biotechnology ,2011,28(2): 136-145.
  • 6Quanfu Wang,Yanhua Hou,Zhong Xu,etc. Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface methodology [J]. Bioresource Technology , 2008, 99: 1926-1931.
  • 7Z Chi, C Ma, P Wang, H F Li. Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans [J]. Bioresource Technology, 2007, 98:534-538.
  • 8周德庆.微生物学教程[M].高等教育出版社,2005.
  • 9Su G Ren J, Yang B, et al. Comparison of hydrolysis characteristics on defatted peanut meal proteins between a protease extract from Aspergillus oryzae and commercial proteases [J]. Food Chemistry, 2011,126:1306-1311.
  • 10Kanmerdpetch A, Weiss M, Kasper C, et al. An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems [J]. Enzyme and Microbial Technology, 2007, 40:508-514.

共引文献34

同被引文献56

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部