期刊文献+

利用纤维床反应器驯化原壳小球藻提高对蔗渣水解液耐受性研究

Domestication of Chlorella protothecoides for High Tolerance to Sugarcane Bagasse Hydrolysate Using a Fibrous-bed Bioreactor
原文传递
导出
摘要 原壳小球藻可快速利用蔗渣水解液中的可发酵糖,但水解液中副产物对细胞生长有抑制作用。为了提高其在高浓度水解液中的异养生长能力,本研究利用纤维床反应器(FBB)驯化细胞,系统研究了蔗渣水解液的制备及其组成、分批补料培养种子液、FBB中的细胞固定化,并在FBB中利用水解液为培养基进行细胞驯化。结果表明,蔗渣经酸解酶解后,其水解液的主要成分为葡萄糖、木糖、乙酸、纤维二糖和阿拉伯糖,浓度分别为18.40g/L、16.17g/L、6.13g/L、5.10g/L和2.29g/L;在发酵罐中采用Basal培养基补料分批培养细胞,117h后细胞密度可达到12.37g/L;将发酵罐与FBB连接并循环培养基33h后形成了固定化细胞床;随后以水解液培养基代替Basal培养基,通过逐级提高水解液培养基浓度来驯化培养固定化细胞,最终从纤维床上分离获得了能在含有35g/L葡萄糖的水解液中异养生长的高耐受性藻株,而野生型藻株不能生长。 Chlorella protothecoides can rapidly utilize fermentable sugars in sugarcane bagassehydrolysate(SCBH), but its cell growth is inhibited by by-products in thehydrolysate. In this study, to enhance theheterotrophic growth capability inhigh-concentration SCBH, C. protothecoides was cultured in a fibrous-bed bioreactor(FBB). The preparation and components of SCBH, seed culture by batch-fed fermentation, cell immobilization in FBB, and cell domestication in SCBH medium in an FBB were systemically studied. The results showed that after acidhydrolysis and enzymolysis, the main components of SCBH were glucose, xylose, acetic acid, cellobiose, and arabinose with concentrations of 18.40, 16.17, 6.13, 5.10, and 2.29g/L, respectively. The cell density was up to 12.37g/L for batch-fed cultures in Basal medium after 117hours in a fermenter. The immobilized cell bed formed when the medium was recycled for 33hours after connecting the fermenter with the FBB. Then, the Basal medium was replaced with SCBH medium, and the concentration of the SCBH medium was gradually increased to domesticate the immobilized cells. Ahighly tolerant strain, which grewheterotrophically in SCBH medium containing 35g/L glucose, was isolated from the fibrous bed, while the wild-type strain was unable to grow.
出处 《现代食品科技》 EI CAS 北大核心 2015年第3期138-143,共6页 Modern Food Science and Technology
基金 国家高技术研究发展计划(863计划2013AA065802) 国家海洋局海洋可再生能源专项资金资助项目(GHME2011SW04) 国家973项目(2011CB200901)
关键词 蔗渣 原壳小球藻 纤维床反应器 驯化 耐受性 sugarcane bagasse Chlorella protothecoides fibrous-bed bioreactor domestication tolerance
  • 相关文献

参考文献14

  • 1Chun-Yen Chen, Kuei-Ling Yeh, Rifka Aisyah’et al.Cultivation, photobioreactor design and harvesting ofmicroalgae for biodiesel production: a critical review [J].Bioresource Technology, 2011, 102: 71-81.
  • 2Gholamhassan Najafi, Barat Ghobadian, Talal F Yusaf.Biofuel from microalgae:alternative, sustainable andrenewable fuel [C]//10th International Conference onSustainable Energy Technologies, Istanbul. 2011: 1-5.
  • 3L Campenni, B P Nobre, C A Santos, et al. Carotenoid andlipid production by the autotrophic microalga Ch/orellaprotothecoides under nutritional, salinity and luminositystress conditions [J]. Bioenergy and Biofuels, 2013,97:1383-1393.
  • 4Xiufeng Li, Han Xu, Qingyu Wu. Large-scale biodieselproduction from microalga Chlorella protothecoides throughheterotrophic cultivation in bioreactors [J]. Biotechnologyand Bioengineering, 2007, 98: 764-771.
  • 5Aili Wei, Xuewu Zhang, Dong Wei, et al. Effects of cassavastarch hydrolysate on cell growth and lipid accumulation ofthe heterotrophic microalgae Chlorella protothecoides [J].Journal of industrial microbiology and biotechnology, 2009,36: 1383-1389.
  • 6Chunfang Gao,Yan Zhai, Yi Ding, et al. Application of sweetsorghum for biodiesel production by heterotrophic microalgaChlorella protothecoides [J]. Applied Energy, 2010: 756-761.
  • 7Ling Jiang, Jufang Wang, Shizhong Liang, et al. Productionof butyric acid from glucose and xylose with immobilizedcells of clostridium tyrobutyricum in a fibrous-bed bioreactor[J]. Applied Biochemistry and Biotechnology, 2010,160:350-359.
  • 8Yu Liang Huang, Zetang Wu, Likun Zhang, et al. Productionof carboxylic acids from hydrolyzed com meal byimmobilized cell fermentation in a fibrous-bed bioreactor [J].Bioresource Technology, 2002, 82: 51-59.
  • 9Dong Wei, Xiaoguang Liu, Shang-Tian Yang. Butyric acidproduction from sugarcane bagasse hydrolysate byClostridium tyrobutyricum immobilized in a fibrous-bedbioreactor [J]. Bioresource Technology, 2013, 129: 553-560.
  • 10R Aguilar, J A Ramirez, G Garrote, et al. Kinetic study of theacid hydrolysis of sugar cane bagasse [J]. Journal of FoodEngineering, 2002,55: 309-318.

二级参考文献47

  • 1汪丹妤,王海燕,薛国新.麦草浆臭氧漂白中戊聚糖含量的变化[J].纸和造纸,2004,23(5):58-59. 被引量:12
  • 2刘志敏,张建玲,韩布兴.超(近)临界水中的化学反应[J].化学进展,2005,17(2):266-274. 被引量:18
  • 3潘亚杰,张雷,郭军,张大雷.农作物秸秆生物法降解的研究[J].可再生能源,2005,23(3):33-35. 被引量:64
  • 4宋佳秀,任南琪,邢德峰.木质纤维素生物转化氢气技术及前景[J].太阳能学报,2007,28(1):97-102. 被引量:17
  • 5Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review[ J]. Int J Mol Sci, 2008,9(9) :1621 - 1651.
  • 6Chang V S, Holtzapple M T. Fundamental factors affecting biomass enzymatic reactivity [ J ]. App Biochem Biotechnol,2000,84/85/86 : 5 -37.
  • 7Palonen H,Thomsen A B, Tenkanen M, et al. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood [ J ]. Appl Biochem Biotechnol,2004,117( 1 ) :1 - 17.
  • 8Grethlein H E. The effect of pore size distribution on the rate of enzymatic hydrolysis of biomass [ J ]. Bio Technol, 1985,3,155 - 160.
  • 9Grous W R, Converse A O, Grethlein H E. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of polar[ J ]. Enzyme Microbiol Technol, 1986,8 (5) :274 - 280.
  • 10Thompson D H, Chen H C, Grethlein H E. Comprarison of pretreatment methods on the basis of available surface area [ J ]. Biochem Bioteehnol, 1992,39 : 155 - 163.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部