摘要
本文采用二阶张量和常微分算子的特征值与特征向量(函数)的研究方法,研究了Sturm-Liouville边值问题.通过这些研究得到,Sturm-Liouville系统特征值问题的微分算子是自伴的,并且其单位正交特征函数系(基)构成完备正交系(基).
This paper uses the research methods of a second order tensor and the differential operator eigenvalue and eigenvector( functions) to study Sturm-Liouville boundary value problem. We can find that differential operator of Sturm-Liouville system eigenvalue problem is self-adjoint and its unit-orthogonal characteristic function system( base) constitutes a complete orthogonal system( base).
出处
《洛阳师范学院学报》
2015年第2期25-27,共3页
Journal of Luoyang Normal University