期刊文献+

变压器油中溶解气体故障诊断的改进模糊算法 被引量:6

Improved Fuzzy Algorithm for Fault Diagnosis on Dissolved Gas in Transformer Oil
下载PDF
导出
摘要 变压器故障原因十分复杂,故障现象与故障机理间的联系存在着模糊性和不确定性。现有的经典故障诊断算法应用广泛,但存在一些固有缺点。为此,引入遗传算法,对模糊迭代自组织数据分析算法(iterative selforganizing data analysis techniques algorithm,ISODATA)进行改进,提出优化诊断方法,提高了算法效率,降低了ISODATA对于初始聚类的依赖性。结合具体诊断案例,对改进前后诊断方案各方面指标进行比较分析,证明所提方案的准确性、高效性。采用遗传算法改进的模糊ISODATA更符合实际需要,可方便地应用于对油浸式变压器的故障诊断。 Reasons for transformer faults are very complex and there are fuzziness and uncertainty in connection between fault phenomenon and mechanism.Existing classical fault diagnosis algorithm is widely applied but there are some inherent demerits.Therefore,genetic algorithm was introduced for improving iterative self-organizing data analysis techniques algorithm(ISODATA)and optimizing diagnosis method was proposed as well which could improve effectiveness of the algorithm and reduce dependency of ISODATA on initial cluster.Combining specific diagnosis cases,various index of the diagnosis schemes before and after improvement were compared and analyzed that verified veracity and high efficiency of the proposed scheme.It was proved that the fuzzy ISODATA based on genetic algorithm was more in accordance with practical requirements and convenient to carry out fault diagnosis on oil immersed transformer.
出处 《广东电力》 2015年第3期86-91,共6页 Guangdong Electric Power
关键词 变压器 故障诊断 模糊算法 遗传算法 聚类优化 transformer fault diagnosis fuzzy algorithm genetic algorithm cluster optimization
  • 相关文献

参考文献9

二级参考文献29

  • 1廖瑞金,廖玉祥,杨丽君,王有元.多神经网络与证据理论融合的变压器故障综合诊断方法研究[J].中国电机工程学报,2006,26(3):119-124. 被引量:98
  • 2王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:45
  • 3宓为建,石来德.动态模糊ISODATA聚类方法及其在故障诊断中的应用[J].同济大学学报(自然科学版),1997,25(1):66-70. 被引量:2
  • 4J. C. Bezedek Cluster validity with fuzzy sets [J]. Journal of Cybernetics,1974,3(3) :58-72.
  • 5J. C. Bezdek Physical interpretation of fuzzy ISODATA [J]. IEEE Trans ,Systems Man,Cybem, 1976,SME--6.
  • 6Theodoridis S.Pattem recognition[M].2nd ed.[S.l.]:Elseviser Science, 2003 : 88-96.
  • 7Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York : Plenum Press, 1981 : 34-42.
  • 8Luminia N.FuzzyBagging:a novel ensemble of classifiers[J].Pattem Recognition, 2006,39( 3 ) :488-490.
  • 9WuK L,Yang M S.A alternative fuzzy c-means clustering algorithm[J].Pattem Recognition,2002,35:2267-2278.
  • 10ZhangD Q,Chen S C.A comment on alternative C-means clustering algorithms[J].Pattern Recognition,2004,37:173-174.

共引文献119

同被引文献100

引证文献6

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部