期刊文献+

模型驱动的软件构件研制保证水平验证方法 被引量:2

Model-driven validation method for software component development assurance level
原文传递
导出
摘要 在机载软件架构设计阶段,人们将安全性研制保证水平分配到具体的构件中,确保产品质量。鉴于现代航空软件系统极其复杂,如何从系统角度,检验分配给构件的安全性等级符合系统的一致性目标,是设计阶段需要解决的重要问题。首先,分析了分布式和综合式机载软件系统的架构特点,得出了在安全性分析工作中需要考虑冗余等架构设计的影响的结论。其次,使用系统建模语言(SysML)块图建立带有安全性等级属性的系统静态结构模型,利用矩阵对模型进行精确的形式化转换;制定验证规则,在此基础上给出了验证方法,以验证安全性等级分配的合理性。在验证过程中,将关键信息存储在XML文档中,可为适航性审查提供证据。最后,通过实例分析,验证了该方法的可行性。 In the airborne software architecture design phase,people assign the safety related development assurance level to specific component to ensure the quality of the product.In view of the modern aviation software system is extremely complex,one of the key problems that how to verifying the safety grade assigned to individual conforms to the goal of the system from the system point of view need to be solved in the design phase.Firstly,this paper analyzes the distributed and integrated architectures characteristic of airborne software system,draw a conclusion that the influence from the redundancy architecture design must be considered in the work of safety analysis.Secondly,the static structure of a system is specified by a system modeling language(SysML)block definition diagram with the description of safety properties.The SysML model is then transformed to formal model using matrix method.Verification rules are set up.Based on the above,a method for checking the rationality of the safety degree assignment is proposed.In the process of verification,the critical information is stored to an XML document to provide evidence for airworthiness review.Finally,the feasibility of this method is verified by an example analysis.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第3期907-920,共14页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61374145 U1333131) 国家"973"计划(2015CB755802 2015CB755805) 中国博士后科学基金(201150M1551) 陕西省自然科学基础研究计划项目(2012JQ8010)~~
关键词 软件安全性 验证与确认 研制保证水平 SYSML DO-178B/C software safety verification &validation development assurance level SysML DO-178B/C
  • 相关文献

参考文献19

  • 1Aven T. Practical implications of the new risk perspec-tives [J ]. Reliability Engineering and System Safety,2013’ 115: 136-145.
  • 2褚文奎,张凤鸣,樊晓光.综合模块化航空电子系统软件体系结构综述[J].航空学报,2009,30(10):1912-1917. 被引量:57
  • 3Dodd I,Habli I. Safety certification of airborne software;an empirical study[J], Reliability Engineering and SystemSafety, 2012,98(1) : 7-23.
  • 4朱和铨,徐浩军,薛源,杨雪,苏晨.一种半实物仿真试验软件安全性评估方法[J].航空学报,2014,35(6):1703-1713. 被引量:4
  • 5Leveson N G. Software safety; why,what, and how[J],Computing Surveys, 1986, 18(2) : 125-163.
  • 6United States Air Force Chief Scientist (AF/ST). Tech-nology horizons: a vision for air force science and technol-ogy during 2010-2030[R]. Washington D. C. : Office ofthe USAF Chief Scientist, 2010.
  • 7Radio Technical Commission for Aeronautics. DO-178Bsoftware considerations in airborne systems and equip-ment certification[S]. Washington D. C. : Radio Techni-cal Commission for Aeronautics, 1992.
  • 8Radio Technical Commission for Aeronautics. DO-178Csoftware considerations in airborne systems and equip-ment certification[S]. Washington D. C. : Radio Techni-cal Commission for Aeronautics,2011.
  • 9Leveson N G. Applying systems thinking to analyze and learn {tom events[J]. Safety Science, 2011, 49 (1): 55-64.
  • 10Kelley K. Automated test case generation from correctand complete system requirements models [ C] H 2009IEEE Aerospace Conference. Piscataway, NJ; IEEE,2009: 1-10.

二级参考文献84

共引文献125

同被引文献12

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部