期刊文献+

ZrAlN薄膜的硬度和韧性与相结构的关系

The relationship of hardness and toughness with phase of magnetron sputtering ZrAlN films
下载PDF
导出
摘要 Al在ZrN薄膜中的存在形式与Al含量密切相关,由此导致ZrAlN薄膜的韧性改变。本文发现了一定成分的ZrAlN薄膜同时具备高硬度和高韧性的现象。采用磁控溅射技术在钛合金和单晶Si上沉积不同Al含量的ZrAlN薄膜,测试了硬度(H)、弹性模量(E)和断裂韧性(KIC),表征了微观组织、相结构,阐明了性能变化机理。采用纳米压入仪测试H和E;压入法及小能量多冲法评价了KIC;采用场发射扫描电镜(FESEM)观察截面形貌,X射线衍射(XRD)分析物相结构。实验发现:当向Zr N薄膜(18.9 GPa)中加入5at%,23at%,47at%和63at%Al后,对应硬度分别是24.5,40.1,17.1和19.1 GPa;对应断裂韧性分别是1.47,3.17,1.13和1.58 MPa·m-0.5,即23at%Al的薄膜同时具备最高的硬度(40.1 GPa)和最高的韧性(3.17 MPa·m-0.5)。XRD表明,5at%和23at%Al固溶到Zr N晶粒中,形成Na Cl型面心立方(FCC)结构,而47at%和63at%Al则形成纤锌矿密排六方(HCP)Al N第二相。采用两种方法定量地评价了薄膜的韧性。 ZrAlN thin films containing variable amounts of aluminum, namely 5, 23, 47 and 63at%, were deposited onto TC6 and Si wafers by magnetron sputtering in an argon/nitrogen gas mixture. The ZrAIN coatings were characterized with Field Emission Gun Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The plastic deformation of films was analyzed from loading/unloading curves measured by nano-indentation method. The fracture toughness of films were determined by Vicker Indenter Load and Low-Load Impact method. The results show that ZrA1N films possess hardness values of 24.5, 40.1, 17.1 and 19.1 GPa, and fracture toughness values of 1.47, 3.17, 1.13 and 1.58 MPa·m^-0.5, respectively. 23at%ZrAlN possesses highest hardness and toughness. XRD indicates that 5at% and 23at%Al dissolved within ZrN grains forms the NaC1 type face-centered cubic (FCC) structures whereas 47at% and 63at%Al forms wurtzite A1N second phase.
出处 《真空》 CAS 2015年第2期25-30,共6页 Vacuum
基金 国家自然科学基金项目(51102283 51401238) 重点实验基金项目(ZX1380)
关键词 纳米复合薄膜 韧性 相结构 磁控溅射 nanocomposite film toughness phase structure magnetron sputtering
  • 相关文献

参考文献15

  • 1Veprek S, Zhang R F, Sheng S H.Superhard nanocomposites: Origin of hardness enhancement, properties and applications [J]. Suface and Coating Technology, 2010,204 : 1898-1906.
  • 2CHEN K Y, BIELAWSKI M.Interfacial fracture toughness of transition metal nitrides[J]. Surface and Coatings Tech- nology, 2008,203 ( 5-7 ) : 598-601.
  • 3Veprek S, Maritza G J, Veprek H, et al.Different approaches to superhard coatings and nanocomposites[J]. Thin Solid Films, 2005,476 : 1-29.
  • 4A. A. Voevodin,J. S. Zabinski,C. Muratore.Recent Advances in Hard, Tough, and Low Friction Nanocomposite Coatings[J].Tsinghua Science and Technology,2005,10(6):665-679. 被引量:19
  • 5Zhang S, Wang H L, Ong S E.Hard yet tough nanocomposite coating-present status and future trends[J]. Plasma Process. Polym, 2007,4 : 219-228.
  • 6Musil J, Jirout M.Toughness of hard nanostructured ceramic thin films[J]. Surface and Coating Technology, 2007,201 : 5148-5152.
  • 7Sanjines R ,Sandu C S, Lamni R.Thermal decomposition of Zr1-xAlxN thin films deposited by magnetron sputtering [J]. Surface and Coating Technology, 2006,200 : 6308-6312.
  • 8Rogstrom L, Ahlgren M.Phase transformations in nanocom- posite ZrAlN thin films during annealing[J]. J.Mater.Res., 2012,27( 13 ) : 1716-1724.
  • 9Lamni R, Sanjines R,Wojtan M P.Microstructure and nano- hardness properties of ZrA1N and ZrCrN thins films[J]. J. Vac. Sci.Technol., 2005, A23 ( 4 ) : 593-597.
  • 10Flink A, Andersson J M, Ailing B.Structure and thermal Stability of arc evaporated (Ti0.33Al0.67)1-xSixN thin films.Thin Solid Films, 2008,517 ( 2 ) : 714-718.

二级参考文献2

  • 1J. Musil,H. Jankovcová,V. Cibulka.Formation of Ti1–x Si x and Ti1–x Si x N films by magnetron co-sputtering[J].Czechoslovak Journal of Physics.1999(3)
  • 2A.A. Voevodin,J.P. O’Neill,J.S. Zabinski.WC/DLC/WS2 nanocomposite coatings for aerospace tribology[J].Tribology Letters.1999(2)

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部