期刊文献+

基于稳定性和无源性的非线性系统生存性分析 被引量:1

Viability Analysis for Nonlinear System Based on Stability and Passivity
原文传递
导出
摘要 研究了一般的非线性系统生存性问题.首先由基于微分包含的生存理论,给出了非线性系统在不等式表示区域上生存的充要条件,然后证明了非线性系统在平衡点的李亚普诺夫稳定性等价于系统在其任意李亚普诺夫函数水平集上的生存性,从而确定了李亚普诺夫函数水平集即为系统的生存域.另外,基于无源性理论还证明了通过适当的输出反馈,可以使得系统在由存储函数确定的区域上是生存的,从而得到系统的生存域.最后仿真结果验证了所得结论的正确性. The viability problem for general nonlinear systems is investigated. First, the necessary and sufficient conditions for determining the viability of the nonlinear system on a region expressed by an inequality are de- veloped using the viability theory based on differential inclusions. Next, it is proved that the Lyapunov stabili- ty for the nonlinear system on the equilibrium is equivalent to the viability of the system on arbitrary Lyapunov function level sets, and it is determined that the Lyapunov function level set is the viable domain. In addi- tion, on the basis of passivity, it is also proved that through the appropriate output feedback, the system can be made viable on the region determined by the storage function, and at the same time, the viable domain is acquired. Finally, the simulation results show the correctness of the conclusions.
出处 《信息与控制》 CSCD 北大核心 2015年第1期125-128,共4页 Information and Control
基金 安徽省自然科学基金资助项目(1408085QA10) 辽宁省教育厅科学研究一般资助项目(L2013047) 安徽省教育厅自然科学研究一般项目(KJ2012B099)
关键词 微分包含 生存性 稳定性 无源性 生存域 differential inclusion viability stability passivity viable domain
  • 相关文献

参考文献20

  • 1Aubin J P. Viability theory[ M]. Boston, USA: Birkhauser, 1991.
  • 2Aubin J P, Lygeros J, Quincampoix M, et al. Impulse differential inclusions: A viability approach to hybrid systems [ J ].IEEE Transactions on Automatic Control, 2002, 47 ( 1 ) : 2 - 20.
  • 3Labinaz G, Guay M. Robust viability of hybrid systems [ J ]. Nonlinear Analysis : Hybrid Systems, 2008 ( 2 ) : 184 - 195.
  • 4Panagou D, Kyriakopoulos K J. Viability control for a class of underactuated systems [ J ]. Automatica, 2013, 49 ( 1 ) : 17 - 29.
  • 5Yan GAO.VIABILITY CRITERIA FOR DIFFERENTIAL INCLUSIONS[J].Journal of Systems Science & Complexity,2011,24(5):825-834. 被引量:7
  • 6高岩,陈征.混杂系统的演化和生存[J].上海理工大学学报,2011,33(6):669-678. 被引量:2
  • 7Gao Y, Lygeros J, Quincampoix M. On the reachability problem of uncertain hybrid systems [ J ]. IEEE Transactions on Automatic Control, 2007, 52(9) : 1572 - 1586.
  • 8Gao Y, Lygeros J, Quincampoix M, et al. On the control of uncertain impulsive system: Approximate stabilisation and controlled invariance [ J]. International Journal of Control, 2004, 77 (16) : 1393 - 1407.
  • 9Quincampoix M, Seube N. Stabilization of uncertain control systems through piecewise constant feedback[ J]. Journal of Mathematical Analysis and Applications, 1998, 218( 1 ) : 240 -255.
  • 10Gao Y, Lygeros J, Quincampoix M, et al. Approximate stabilisation of uncertain hybrid systems [ M ]//Lecture Notes in Computer Science, vol 2623. Berlin, Germany : Sprlnger-Verlag, 2003 : 203 - 215.

二级参考文献93

共引文献27

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部