期刊文献+

基于干扰力时间积分的悬吊漂浮物随动控制方法 被引量:14

Tracking Control Method for Suspended Floater Based on Time Integral of Disturbance Force
原文传递
导出
摘要 为消除卫星6自由度失重模拟系统对悬吊式漂浮目标体的运动干扰,提出了干扰力的随动控制方法.首先提出随动控制策略:以吊索摆角对时间积分项、比例项和时间微分项分别表征模拟系统对失重对象的干扰冲量、系统位置跟踪误差和系统速度跟踪误差;要求三者趋向于0.然后建立控制模型:建立随动悬吊模块的3维动力学模型;根据线性简化后模型的对称性和解耦性,得出控制用的2维线性模型.构造基于吊索摆角调节的随动控制系统结构,根据经典控制理论设计调节控制器.另外,速率反馈方法被引入到控制模型中,避免在控制带宽内产生谐振现象.仿真结果表明零重力模拟系统能快速地跟上漂浮对象,且此过程中对漂浮对象的干扰冲量为0,验证了本文控制策略与控制器的可行性和有效性. A disturbance force tracking control method is proposed for the satellite weightless simulator of 6 degrees of freedom, to eliminate the interference between the simulator and the suspended floating objects. Firstly, a control strategy is presented, in which the values of the time integral, proportional and time differential terms of the swing angle of the suspension wire are used to characterize the impulse interference from the compensation system, the position tracking error and the velocity tracking error respectively, and the three values should converge to zero. The control models are then established, including a 3-dimensional dynamic model of the suspension module and a 2-dimensional linear model for control, and the latter is obtained according to the symmetry and decoupling characteristics of the simplified 3-dimensional model. The structure of tracking control system is constructed by regulating the swing angle of the suspension wire, and a regulation controller based on classic control theory is designed. In addition, a velocity feedback is introduced into the control model to avoid resonance in the control bandwidth. The simulation results indicate that the zero-gravity simulation system is capable of tracking a floating object rapidly, and during that process, the simulator imposes zero impulse interference on the floating object. The feasibility and effectiveness of the control strategy and the controller are verified.
出处 《机器人》 EI CSCD 北大核心 2015年第1期1-8,16,共9页 Robot
基金 国家自然科学基金资助项目(51275106) 高等学校学科创新引智计划资助项目(B07018)
关键词 零重力模拟 悬吊法 动力学 随动控制 仿真 zero-gravity simulation suspension dynamics tracking control simulation
  • 相关文献

参考文献14

  • 1Kemurdjian A, Khakhanov U A. Development of simulation means for a gravity forces[C]//Aerospace Division of the AS- CE. Robotics 2000. Albuquerque, USA: ASCE, 2000: 220-225.
  • 2齐乃明,张文辉,高九州,霍明英.空间微重力环境地面模拟试验方法综述[J].航天控制,2011,29(3):95-100. 被引量:58
  • 3Chen C I, Chen Y T, Wu S C, et al. Experiment and simulation in design of the board-level drop testing tower apparatus[J]. Ex- perimental Techniques, 2012, 36(2): 60-69.
  • 4屈斌,王启,王海平,贾晓鹏.失重飞机飞行方法研究[J].飞行力学,2007,25(2):65-67. 被引量:18
  • 5Gernhardt M, MacNeil K, Marinova M, et al. Underwater envi- ronment used to simulate moon's gravity in development of next generation spacesuit[OL]. [2013-05-07]. http://research.jsc. nasa.gov/BiennialResearchReport/PDF/EA- 1 .pdf.
  • 6刘巍,张磊,赵维.载人低重力模拟技术现状与研究进展[J].航天医学与医学工程,2012,25(6):463-468. 被引量:8
  • 7Nalley M J, Trabia M B. Control of overhead cranes using a fuzzy logic controller[J]. Journal of Intelligent and Fuzzy Sys- tems, 2000, 8(1): 1-18.
  • 8Lee H H. Modeling and control of a three-dimensional overhead crane[J]. American Society of Mechanical Engineers Journal of Dynamic Systems, Measurement, and Control, 1998, 120(4): 471-476.
  • 9Mahfouf M, Kee C H, Abbod M F, et al. Fuzzy logic-based anti- sway control design for overhead cranes[J]. Neural Computing & Applications, 2000, 9(1): 38-43.
  • 10Sato , Ejiri A, Iida Y, et al. Micro-G emulation system using constant-tension suspension for a space manipulator[C]//1EEE International Conference on Robotics and Automation. Piscat- away, USA: IEEE, 1991: 1893-1900.

二级参考文献29

  • 1屈斌,王启,王海平,贾晓鹏.失重飞机飞行方法研究[J].飞行力学,2007,25(2):65-67. 被引量:18
  • 2WHITE G C, XU Y. An active vertical-direction gravity compensation system[J]. IEEE Transactions on Instrumentation and Measurment, 1994,43 (6) : 12.
  • 3SATO Y, EJIRI A, IIDA Y, et al. Micro-G emulation system using constant-tension suspension for a space manipulator[C]//Proceedings of the 1991 IEEE International Conference on Robotics and Automation Sacramento. California: [ s. n. ], 1991.
  • 4Sullivan B R, Akin D L. A Survey of Serviceable Spacecraft Failures [C]. AIAA Space- Conference and Exposition, Reston, VA, USA : AIAA ,2001:4531-4540.
  • 5Carignan C R,Akin D L. The Reaction Stabilization of On-orbit Robots [ J ]. IEEE Control Systems Magazine, 2000,20 ( 6 ) : 19-33.
  • 6White G C, Xu Y S. Active Vertical-direction Gravity Compensation System [ J ]. IEEE Transactions on Instru- mentation and Measurement, 1994,43 ( 6 ) :786-792.
  • 7Xu Y S,Brown H B,Friedman M J. Control System of the Self-mobile Space Manipulator[ J ]. IEEE Transactions on Control Systems Technology, 1994,2 ( 3 ) : 207-219.
  • 8Sato Y,Ejiri A,Iida Y, et al. Micro-G Emulation System Using Constant-tension Suspension for a Space Manipu- lator [ C ]//Proceedings of the IEEE International Con- ference on Robotics and Automation. Piscataway, N J,USA: IEEE ,1991:1893-1900.
  • 9Koningstein R,Cannon R H J. Experiments with Model- simplified Computed-torque Manipulator Controllers for Free-flying Robots [ J ]. Journal of Guidance, Control, and Dynamics, 1995,18 ( 6 ) : 1387-1391.
  • 10Robertson A,Inalhan G, How J P. Space Craft Formation Flying Control Design for the Orion Mission [ C ]. AIAA Guidance, Navigation, and Control Conference. Re- ston, VA, USA : AIAA, 1999 : 1562-575.

共引文献81

同被引文献117

引证文献14

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部