1Arabale G, Wagh D, Kulkami M, et al. Enhanced super- capacitance of multiwalled carbon nanotubes functional- ized with ruthenium oxide[J]. Chemical Physics Letters, 2003, 376(1/2): 207-213.
2Simon P, Gogotsi Y. Materials for electrochemical capac- itors[J]. Nature Materials, 2008, 7(11): 845-854.
3Eliad L, Pollak E, Levy N, et al. Assessing optimal pore-to-ion size relations in the design of porous poly (vinylidene chloride) carbons for EDL capacitors[J]. Ap- plied Physics A: Materials Science & Processing, 2006, 82(4): 607-613.
4Eliad L, Salitra G, Softer A, et al. On the mechanism of selective electroadsorption of protons in the pores of car- bon molecular sieves[J]. Langmuir, 2005, 21(7): 3198- 3202.
5Frackowiak E, B6guin F. Carbon materials for the elec- trochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950.
6Vix-Guterl C, Frackowiak E, Jurewicz K, et al.Electro- chemical energy storage in ordered porous carbon materi- als[J]. Carbon, 2005, 43(6): p. 1293-1302.
7Brownson D A C, Banks C E. Fabricating graphene su- percapacitors: Highlighting the impact of surfactants and moieties[J]. Chemical Communications, 2012, 48 (10): 1425-1427.
8Peng C, Jin J, Chert G Z. A comparative study on electro- chemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes [J]. Electrochimica Acta, 2007, 53(2): 525-537.
9Chang J, Lee M, Tsai W, et al. Pseudocapacitive mecha- nism of manganese oxide in 1-ethyl-3-methylimidazoli- um thiocyanate ionic liquid electrolyte studied using X-ray photoelectron spectroscopy[J]. Langmuir, 2009, 25 (19): 11955-11960.
10Conway B E. Electrochemical supercapacitors: Scientif- ic fundamentals and technological applications[M]. New York: Kluwer Academic/Plenum, 1999.