期刊文献+

基于事件关联网络的用户兴趣话题发现算法

Algorithm to find topics that users are interested based on network associated with events
下载PDF
导出
摘要 面对海量的网络新闻信息,为了能更加准确与全面地从中发现用户感兴趣的话题,提出一种基于事件关联网络的用户兴趣话题发现算法。该算法建立了代表事件之间关联关系的事件关联网络,基于该事件关联网络,采用链接分析技术度量用户对不同新闻事件感兴趣的程度,从而采用针对新闻特定语义架构的改进Single-pass聚类算法发现用户感兴趣的话题。此外,采用Bootstrapping算法,实现对相关兴趣领域词汇的语义扩展。实验表明,该算法能够更加准确而全面地获取用户感兴趣的话题。 Being faced of massive Internet news information,to improve the accuracy of detecting the topics that the users are interested,a topic detection algorithm based on the network associated with the events is proposed for users’interest. The algorithm established an event?related network representative of relevance relationship among news events. The link analysis tech?nique is used to measure the degree of user interest in the news,so as to identify the topics that the users are interested by using an improved Single?pass clustering algorithm based on news specific semantic structure. In addition,Bootstrapping algo?rithm is adopted to achieve the related interest words’semantic extensions. The experiment result shows that the algorithm can more accurately and comprehensively get the topics that the users are interested.
出处 《现代电子技术》 北大核心 2015年第6期7-12,共6页 Modern Electronics Technique
关键词 话题识别 链接分析 用户兴趣 Bootstrapping算法 关联网络 topic recognition link analysis user interest Bootstrapping algorithm associated network
  • 相关文献

参考文献10

  • 1张玥,张宏莉.基于关联性的热点话题识别[J].智能计算机与应用,2014,4(3):55-59. 被引量:1
  • 2MA Hui-fang.Hot topic extraction using time window[C] //Proceedings of 2011 International Conference on Machine Learning and Cybernetics(ICMLC).Guilin,China:[s.n.] ,2011:56-60.
  • 3YOU Bo,LIU Ming,LIU Bing-quan,et al.Detecting hot topics in technology news streams[C] //Proceedings of 2012 International Conference on Machine Learning and Cybernetics(ICMLC).Xi’an,China:[s.n.] ,2012:1968-1974.
  • 4ZHAO Li-yong,ZHAO Chong-chong,PANG Jing-qin,et al.Sensitive topic detection model based on collaboration of dynamic case knowledge base[C] //Proceedings of 20th IEEE International Workshops on Enabling Technologies:Infrastructure for Collaborative Enterprises(WETICE).Paris:IEEE,2011:156-161.
  • 5ZHAO Li-yong,LI Ai-min.A novel system for sensitive topic detection and alert assessment[C] //Proceedings of2011Eighth International Conference on Fuzzy Systems and Knowledge Discovery(FSKD).Shanghai,China:[s.n.] ,2011:1751-1755.
  • 6DAI Xiang-ying,CHEN Qing-cai,WANG Xiao-long,et al.Online topic detection and tracking of financial news based on hierarchical clustering[C] //Proceedings of International Conference on Machine Learning and Cybernetics(ICMLC).Qingdao,2010:3341-3346.
  • 7KURTZ A J,MOSTAFA J.Topic detection and interest tracking in a dynamic online news source[C] //Proceedings of Joint Conference on Digital Libraries.[S.l.] :[s.n.] ,2003:122-124.
  • 8杨雪蓉,洪宇,马彬,姚建民,朱巧明.基于核心词和实体推理的事件关系识别方法[J].中文信息学报,2014,28(2):100-108. 被引量:12
  • 9VETTER T,JONES M J,POGGIO T.A bootstrapping algorithm for learning linear models of object classes[C] //Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Juan:IEEE,1997:40-46.
  • 10赵爱华,刘培玉,郑燕.基于LDA的新闻话题子话题划分方法[J].小型微型计算机系统,2013,34(4):732-737. 被引量:18

二级参考文献15

  • 1于满泉,骆卫华,许洪波,白硕.话题识别与跟踪中的层次化话题识别技术研究[J].计算机研究与发展,2006,43(3):489-495. 被引量:49
  • 2洪宇,张宇,刘挺,李生.话题检测与跟踪的评测及研究综述[J].中文信息学报,2007,21(6):71-87. 被引量:153
  • 3W J Li, W Xu, M L Wu, et al. Extractive summariza- tion using inter- and intra- event relevance[C]//Pro- ceedings of the 21st International Conference on Com- putational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, 2006: 369- 376.
  • 4T Chklovski, P Pantel. Global path-based refinement of noisy graphs applied to verb semantics[C]//Pro- ceedings of the Joint Conference on Natural Language Processing, Jeju Island, Korea, 2005: 792-803.
  • 5P Pantel, M Pennacchiotti. Espresso: leveraging ge- neric patterns for automatically harvesting semantic re- lations[C]//Proceedings of the 21st International Con- ference on Computational Linguistics and 44th Annual Meeting of the ACL, Sydney, Australia, 2006: 113- 120.
  • 6Z S Harris. Mathematical Structure of Language[M]. New York, 1968.
  • 7D Lin, P Pantel. Discovery of Inference Rules from Text[C]//Proceedings of the 7th ACM SIGKDD, San Francisco, California, USA, 2001: 323-328.
  • 8I Szpektor, H Tanev, I Dagan, et al. Scaling Web- based Acquisition of Entailment Relations[C]//Pro- ceedings of the Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain, 2004 : 41-48. 2012, 6:109-116.
  • 9Y Hong, J F Zhang, B Ma, et al. Using Cross-Entity Inference to Improve Event Extraction[C]//Proceed- ings ACL 2011: 1127-1136.
  • 10B J Frey, D Duerk. Clustering by Passing Messages Between Data Points[J]. Science. 2007, 315 972- 976.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部