期刊文献+

基于堆栈降噪自动编码模型的动态纹理分类方法 被引量:2

Dynamic texture classification method based on stacked denoising autoencoding model
下载PDF
导出
摘要 针对以往动态场景分类中需要手动提取动态特征描述符以及特征维数过高的问题,提出利用深度学习网络模型进行动态纹理特征的提取。首先利用慢特征分析法(SFA)预先学习每个视频序列的动态特征,将该特征作为深度学习网络模型的输入数据进行学习,进一步得到信号的高级表示,深度网络模型选用堆栈降噪自动编码模型,最后用SVM分类法对其进行分类。实验证明该方法所提取的特征维数低,并且能够有效地表示动态纹理。 To overcome the shortcomings of extracting the feature descriptors by manual operation and too high feature di?mension for dynamic scene classification,a deep learning network model is proposed to extract dynamic texture features. First?ly,the slow feature analysis method is used to learn dynamic characteristics of each video sequence through before hand,and the learned feature is used as input data of deep learning to get the advanced representation of the input signal. The stacked de?noising autoencoding model is selected for the deep learning network mode. SVM classification method is used for its classifica?tion. The experimental result proves that the feature dimension extracted by this method is low and can effectively describe dy?namic textures.
出处 《现代电子技术》 北大核心 2015年第6期20-24,共5页 Modern Electronics Technique
基金 国家自然科学基金(11204109) 江苏省高校自然科学基金(12KJB510003)
关键词 动态纹理分类 慢特征分析 深度学习 堆栈降噪自动编码网络模型 dynamic texture classification slow feature analysis deep learning stacked denoising autoencoding model
  • 相关文献

参考文献17

  • 1DORETTO G,CHIUSO A,WU Y,et al.Dynamic textures[J].International Journal on Computer Vision,2003,51(2):91-109.
  • 2NELSON R C,POLENA P.Qualitative recognition of motionusing temporal texture[J].CVGIP:Image Understanding,1992,56(1):78-89.
  • 3POLANA R,NELSON R.Temporal texture and activity recog-nition[J].Motion-Based Recognition:Computational Imagingand Vision,1997,9:87-124.
  • 4SZUMMER M,PICARD R W.Temporal texture modeling[C] //Proceedings of 1996 International Conference on Image Process-ing.[S.l.] :[s.n.] ,1996:11-16.
  • 5FAZEKAS S,CHETVERIKOV D.Normal versus complete flowin dynamic texture recognition a comparative study[C] //20054th International Workshop on Texture Analysis and Synthesis(ICCV 2005).[S.l.] :[s.n.] ,2005:37-42.
  • 6ZHAO G,PIETIKINEN M.Dynamic texture recognition usingvolume local binary patterns[C] //European Conference onComputer Vision.[S.l.] :[s.n.] ,2006:165-177.
  • 7PIETIK¨AINEN G Z M.Dynamic texture recognition using lo-cal binary patterns with an application to facial expression[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2007,29(6):915-928.
  • 8THERIAULT Christian,THOME Nicolas,CORD Matthieu.Dy-namic scene classification:learning motion descriptors withslow features analysis[EB/OL].[2014-09-17].http://www.com-puter.org.
  • 9FRANZIUS M,WILBERT N,WISKOTT L.Invariant objectrecognition with slow feature analysis[C] //ICANN 18th Interna-tional Conference.Berlin:Springer-Verlag,2008:961-970.
  • 10WISKOTT L,SEJNOWSKI T.Slow feature analysis:Unsuper-vised learning of invariances[J].Neural Comput.,2002,14:715-770.

二级参考文献15

  • 1Wiskott L, Sejnowski T. Slow Feature Analysis: Unsupervised Learning of Invariances. Neural Computation, 2002, 14 ( 4 ) : 715 - 770.
  • 2Berkes P, Wiskott L. Slow Feature Analysis Yields a Rich Repertoire of Complex Cell Properties. Journal of Vision, 2005, 5 (6) : 579 - 602.
  • 3Franzius M, Sprekeler H, Wiskott L. Slowness and Sparseness Lead to Place, Head-Direction and Spatial-View Cells. PLoS Computational Biology, 2007, 3 (8) : 1605 - 1622.
  • 4Blaschke T, Zito T, Wiskott L. Independent Slow Feature Analysis and Nonlinear Blind Source Separation. Neural Computation, 2007, 19(4) : 994 - 1021.
  • 5Franzius M, Wilbert N, Wiskott L. Unsupervised Learning of Invariant 3D-Object Representations with Slow Feature Analysis// Proc of the 3rd Bernstein Symposium for Computational Neuroscience. Gottingen, Germany, 2007 : 105 - 112.
  • 6Franzius M, Wilbert N, Wiskott L. Invariant Object Recognition with Slow Feature Analysis//Proc of the 18th International Conference on Artificial Neural Networks. Prague, Czech Republic, 2008 : 961 -970.
  • 7Courant R, Hilbert D. Methods of Mathematical Physics. New York, USA: Wiley-Interscience, 1989.
  • 8Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995.
  • 9Scholkopf B, Smola A. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319.
  • 10Scholkopf B, Mika S, Burges C J C, et al. Input Space vs. Feature Space in Kernel-Based Methods. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.

共引文献7

同被引文献16

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部