期刊文献+

基于纸币透射图像的新旧检测 被引量:3

New and old banknotes′ classification based on transmission images
下载PDF
导出
摘要 纸币新旧检测是纸币清分机中的一个重要功能,与传统的基于纸币反射图像检测纸币新旧等级不同,采用了纸币的透射图像进行纸币新旧检测。根据纸币的新旧程度人工划分为3个等级,分别使用了基于灰度图像整体亮度的新旧检测法和传统的模式识别的方法,采用纸币透射图像直方图分布作为纸币新旧特征,分别使用了KNN、SVM分类器进行分类,并且提出一种简单的级联分类器。实验结果表明级联分类器比KNN和SVM的单独使用有更好的表现。 Classification of new or old banknotes is a important function in the banknote sorter. The transmission image is adopted in this paper to detect new or old banknotes. It is different from the traditional new or old banknote detection based on reflection images. According to the new or old degree of banknotes,all banknote samples are divided into three grades. The new or old banknote detection method based on gray level image brightness and pattern recognition method are used respectively. The histogram distribute of transmission image is used as feature of new or old banknotes. The KNN and SVM classifier are employed to carry out classification. A new cascade classifier which combines SVM and KNN is put forward. Test proves the new cascade classifier is more effective than SVM and KNN in detection of new or old banknotes.
作者 祁磊 任明武
出处 《现代电子技术》 北大核心 2015年第6期101-104,107,共5页 Modern Electronics Technique
关键词 透射图像 模式识别 SVM 级联分类器 transmission image pattern recognition SVM cascade classifier
  • 相关文献

参考文献6

  • 1TERANISHI M,OMATU S,KOSAKA T.Neuro-classification of currency fatigue levels based on acoustic cepstrum patterns[J].JACIII,2000,4(1):18-23.
  • 2王洪,陈丽,肖思宁.基于BP-LVQ神经网络的纸币新旧识别算法研究[J].光学与光电技术,2010,8(4):64-67. 被引量:1
  • 3COVER T,HART P.Nearest neighbor pattern classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27.
  • 4CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
  • 5BURGES C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 6CHANG C C,LIN C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology(TIST),2011,2(3):27-30.

二级参考文献7

同被引文献16

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部