期刊文献+

基于离散余弦变换和稀疏表示的人脸识别 被引量:1

Face recognition based on DCT and sparse representation
下载PDF
导出
摘要 传统的基于稀疏表示的人脸识别方法是基于人脸的整体特征的,这类方法要求每位测试者的人脸图像要有足够多幅,而且特征维度高,计算复杂,针对这一问题,提出一种基于离散余弦变换和稀疏表示的人脸识别方法,对人脸图像进行分块采样,对采样样本使用离散余弦变换和稀疏分解,然后使用一种类似于词袋的方法得到整幅图像的特征向量,最后使用相似度比较的方法进行分类识别。实验表明,在此提出的方法比传统的基于稀疏表示的人脸识别方法在训练样本较少时效果更好。 Traditional face recognition methods based on sparse representation are based on holistic feature of face image. The methods requires enough face images for each test person and the high dimensional feature,and has computational complexi?ty. Aiming at these shortcomings,a face recognition method based on discrete cosine transform(DCT)and sparse representation is proposed,which divides an image into regions,samples in each region,decomposes the samples by DCT and sparse represen?tation,gets feature vector of the whole image with a method like bag?of?word,and then classifies and identifies them by similari?ty comparing method. The experiment results indicate that the method outperform the traditional face recognition methods based on sparse representation when there are few training samples.
出处 《现代电子技术》 北大核心 2015年第6期115-118,共4页 Modern Electronics Technique
基金 江苏支撑计划项目(BE2014714)
关键词 人脸识别 离散余弦变换 稀疏表示 词袋 局部特征 face recognition discrete cosine transform sparse representation bag-of-word local feature
  • 相关文献

参考文献17

  • 1JAFRI R,ARABNIA H R.A Survey of face recognition tech-niques[J].Journal of Information Processing Systems,2009,5(2):41-68.
  • 2李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 3WRIGHT J,YANG A Y,GANESH A,et al.Robust facerecognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 4YANG M,ZHANG L.Gabor feature based sparse representa-tion for face recognition with gabor occlusion dictionary[C] //European Conference on Computer Vision.Berlin Heidelberg:[s.n.] ,2010:448-461.
  • 5YANG M,ZHANG L,YANG J,et al.Robust sparse codingfor face recognition[C] //IEEE Conference on Computer Visionand Pattern Recognition.[S.l.] :IEEE,2011:625-632.
  • 6YANG M,ZHANG L,FENG X,et al.Fisher discriminationdictionary learning for sparse representation[C] //IEEE Interna-tional Conference on Computer Vision.[S.l.] :IEEE,2011:543-550.
  • 7AHONEN T,HADID A,PIETIKAINEN M.Face descriptionwith local binary patterns:Application to face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelli-gence,2006,28(12):2037-2041.
  • 8LIU C,WECHSLER H.Gabor feature based classificationusing the enhanced fisher linear discriminant model for facerecognition[J].IEEE Transactions on Image processing,2002,11(4):467-476.
  • 9SANDERSON C,LOVELL B C.Multi-region probabilistic his-tograms for robust and scalable identity inference[C] //Advancesin Biometrics.Berlin Heidelberg:Springer,2009:199-208.
  • 10CUI Z,SHAN S,CHEN X,et al.Sparsely encoded local de-scriptor for face recognition[C] //IEEE International Con-ference on Automatic Face&Gesture Recognition and Work-shops.[S.l.] :IEEE,2011:149-154.

二级参考文献60

  • 1Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face Recognition: A Literature Survey. ACM Computing Surveys, 2003, 35(4):399-458
  • 2Phillips P J, Grother P, Micheals R J, Blackburn D M, Tabassi E, Bone J M. Face Recognition Vendor Test 2002: Evaluation Report. 2003. http://www.frvt. org/FRVT2002/documents. htm
  • 3Daugman J. Face and Gesture Recognition: Overview. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 675-676
  • 4Phillips P J, Wechsler H, Huang J, Rauss P. The FERET Database and Evaluation Procedure for Face-Recognition Algorithms. Image and Vision Computing Journal, 1998, 16(5): 295-306
  • 5Yang M H, Kriegman D J, Ahuja N. Detecting Faces in Images:A Survey. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58
  • 6Brunelli R, Poggio T. Face Recognition: Features Versus Templates. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052
  • 7Bledsoe W. Man-Machine Facial Recognition. Technical Report, PRI:22, Panoramic Research Inc., Palo Alto, USA, 1966
  • 8Kanade T. Computer Recognition of Human Faces. Ph. D Dissertation. Kyoto University, Japan, 1974
  • 9Samal A, Iyengar P A. Automatic Recognition and Analysis of Human Faces and Facial Expressions: A Survey. Pattern Recognition, 1992, 25(1): 65-77
  • 10Nefian A V, Hayes M H. Hidden Markov Models for Face Recognition. In:Proc of the IEEE International Conference on Acoustics Speech and Signals Process. Seattle, USA, 1998, Ⅴ: 2721-2724

共引文献106

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部