期刊文献+

基于结构相似度的图像去噪新方法 被引量:1

A Novel Image Denoising Method Based on Structural Similarity
下载PDF
导出
摘要 将结构相似度作为一种刻画忠诚项的度量用于图像去噪模型中。针对经典ROF模型忠诚项的约束项L2度量未考虑图像空间结构性而导致恢复图像视觉效果差的缺陷,引入结构相似度来改进模型的忠诚项,提出了一种新的去噪模型。为在去噪过程中,更好地保护图像的边缘,在此模型的基础上,文中还做了进一步改进,用非凸正则项代替TV正则项,得到推广模型。实验结果表明,相对于ROF模型,两个模型在有效去除噪声的同时,能更好地保持图像的结构信息,提高图像的视觉效果,且推广模型在图像边缘保护方面的性能更好。 In this paper, we make one of the first attempts to incorporate the structural similarity as the fidelityterm into the framework of image denoising in order to overcome the weakness that the fidelity term of the classicalROF model does not consider image structure, which leads to poor visual image restoration. This paper first proposesa new image denoising model ( model 1 ) by introducing structural similarity as the fidelity term instead of the origi-nal. In promotion model 2, a nonconvex regularization rather than the classical TV regularization is used to preservethe edge better while removing noises. Experimental results show model 1 and model 2 achieve better performancethan ROF model in image structural information and perceptual image quality. And model 2 plays a more importantrole in preserving image edge than model 1.
作者 余婷
出处 《电子科技》 2015年第3期1-6,共6页 Electronic Science and Technology
基金 国家自然科学基金资助项目(61105011)
关键词 图像去噪 结构相似度 梯度下降法 交替迭代法 image denoising structural similarity gradient descent method alternative iteration strategy
  • 相关文献

参考文献16

  • 1Rudin L I, Osher S, Fatemi E. Nonlinear total variation bases noise removal algorithms [ J ]. Physiea D, 1992,60 ( 1 - 4 ) : 259 - 268.
  • 2Aubert G, Kornprobst P. Mathematical problems in image pro- cessing:partial differential equations and the calculus of varia- tions ( second edition ) [ M ]. USA : Applied Mathematical Sci- ences ,2006.
  • 3Lebrun M, Colom M, Buades A, et al. Secrets of image denoise cuisine [ J ]. Acta Nummerica,2012,21 (2) :475 - 576.
  • 4Wang Z,Bovik A C. Mean square error:love it or leave it? A new look at signal fidelity measures [ J]. IEEE Signal Pro- cessing Magazine ,2009,26( 1 ) :98 - 117.
  • 5Wang Z, Bovik A C, Sheikh H R, et al. Image quality assess- ment:From error visibility to structural similarity [ J ]. IEEE Transactions on Image Processing,2004,13 (4) :600 - 612.
  • 6Brunet D, Vrscay E R, Wang Z. Structural similarity based approximation of signals and images using orthogonal bases C ]. Povoa de Varzim, Portugnal : Internationnal Conferenceon Image Analysis and Recognition (ICAR10), 2010: 11 -22.
  • 7Brunet D, Vrsca E R, Wang Z. A class of image metric based on the structural similarity quality index [J]. Image Analysis and Recognition ,2011,65 (7) :264 - 275.
  • 8Rehman A, Wang Z, Brunet D, et al. SSIM - inspired image denoising using sparse representations [ C]. Prague, Czech: IEEE International Conference on Acoustics, Specch&Signal Processing( ICASSP11 ) ,2011 : 1121 - 1124.
  • 9Wang Z, Simoncelli E P. Maximum differentiation ( MAD ) competition: A methodology for comparing computational models of perceptual quantities I J]. Journal of Vision,2008, 8(12) :1 -13.
  • 10Brunet D,Vrscay E R,Wang Z. On the mathematical proper- ties of the structural similarity index [ J ]. IEEE Transactions on image processing,2012,21 (4) : 1488 - 1498.

二级参考文献27

  • 1Huang Yumei,Ng M K,Wen Youwei.A New Total Variation Method for Multiplicative Noise Removal[J].SIAM J Image Sciences,2009,2(1):20-40.
  • 2Durand S,Fadili J,Nikolova M.Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients[J].J Math Imaging Vis,2010(36):201-226.
  • 3Beck A,Teboulle M.Fast Gradient Based Algorithms for Constrainted Total Variation Image Denoising and Deblurring Problems[J].IEEE Transactions on Image Processing,2009,18(11):2419-2434.
  • 4Rudin L I,Osher S,Fatemi E.Nonlinear Total Variational Based Noise Removal Algorithms[J].Physica D,1992(60):259-268.
  • 5Chambolle A,Devore R A,Lee N Y,et al.Nonlinear Wavelet Image Processing:Variational Problems,Compresssion and Noise Removal Through Wavelet Shrinkage[J].IEEE Trans on Image Processing,1998,7(3):319-335.
  • 6Lorenz D A.Solving Variational Problems in Image Processing Via Projections a Common View on TV Denoising and Wavelet Shrinkage[J].Z Angew Math Mech,2007,87(1):247-256.
  • 7Meyer Y.Oscillating Patterns in Image Processing and Some Nonlinear Evolution Equations[M].Boston:American Mathematical Society,2001.
  • 8Vese L A,Osher S J.Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing[J].Journal of Scientific Computing,2003,19(1-3):553-572.
  • 9Chan T F,Esedoglu S.Aspects of Total Variation Regularization L1 Function Approximation[R].Los Angeles:UCLA,2004.
  • 10He L,Burger M,Osher S J.Iterative Total Variation Regularization with Non-quadratic Fidelity[J].Journal of Mathematical Imaging and Vision,2006(26):167-184.

共引文献6

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部