期刊文献+

空气强制对流冷却工况下多芯片散热过程数值模拟 被引量:1

Numerical simulation of heat dissipation for multiple electronic chips under forced air convection cooling conditions
原文传递
导出
摘要 建立强制空气对流冷却多个电子芯片的理论模型,采用控制容积法离散控制方程组并进行数值求解,得到芯片和固体基板的温度场,分析了冷却空气流过电子芯片的流场,同时在考虑芯片与基板的接触热阻的情况下,计算了芯片的温度分布,并与不考虑其接触热阻的数值模拟结果进行了比较。研究表明离冷却空气进口最远的芯片温度最高;空气在芯片之间流动会产生回流现象;当电子芯片与固体基板接触热阻较小时,芯片工作产生的热量能很好地通过固体基板传递出去,而当电子芯片与固体基板接触热阻较大时,热量传递会相对困难,使得芯片工作时产生的热量不能及时带走,芯片容易超温工作。 A theoretical model for forced air convection cooling of multiple electronic chips was developed,control volume method was used to discrete control equations solved numerically to obtain the chip and solid substrate temperature field. The flow field for cooling air flowing through electronic chips was analyzed,the temperature distribution of the chip was obtained in considering of the contact thermal resistance between the substrate and chip. The results were compared with the case without their contact thermal resistance. The study shows that the highest temperature appears to the chip which is furthest away from the cooling air inlet; air flow between the chips will produce reversed flow phenomenon. Without considering the thermal contact resistance between the electronic chip and solid substrate,the heat emitted by the chip can be well pass through the solid substrate; with considering the contact thermal resistance,heat transfer will be relatively difficult,and it cause the chip temperature to rise.
出处 《低温与超导》 CAS 北大核心 2015年第3期61-65,共5页 Cryogenics and Superconductivity
基金 国家"十二.五"科技支撑计划项目(2011BAJ03B14)资助
关键词 电子芯片 散热 接触热阻 温度场 Electronic chip Heat dissipation Thermal contact resistance Temperature field
  • 相关文献

参考文献14

  • 1过增元.当前国际传热界的热点--微电子器件的冷却[J].中国科学基金,1988(2):20-25.
  • 2Toshio Aihara. Natural convection heat transfer from vertical rectangular - Fin Arrays [ J ]. Report of the Institute of High Speed Mechanics, 1970,21 (214) : 105 - 187.
  • 3Chaddock J B. Free convection heat transfer from vertical rectangular fins arrays [ J ]. Ashrae Journal, 1970, 14 (8) : 53 -60.
  • 4Charles D J, Smith L F. Optimum arrangement of rectan- gular fins of horizontal surfaces for free - convection heat transfer[J]. Journal of Heat Transfer, 1970, 92( 1 ) :6 -10.
  • 5Yuan T D. Computational modeling of flow bypass effects on straight fin heat sink in rectangular duct[ R]. Twelfth IEEE SEMI - THERMT Symposium, 1996 : 164 - 168.
  • 6Kitajo S. Development of a high performance air cooled heat sink for Multi - Chip Modules [ R ]. Eighth IEEE SEMI - THERMT Symposium, 1992 : 119 - 124.
  • 7Patrick H O. A numerical study of mixed convective heat transfer from a parallel fin heat sink [ C ]. 38^th AIAA Thermophysics Conference, 2005.
  • 8Susheela Narasimhan. Compact heat sink simulations in both forced and natural convection flows[ C]. 8th AIAA/ ASME Joint Thermophysics and heat transfer Confer- ence, 2002.
  • 9Duan Z P. Experimental investigation of heat transfer in impingement air cooled plate fin heat sinks [ C ]. 38^th AIAA Thermophysics Conference, 2005.
  • 10张亚平,冯全科,余小玲.CPU散热器散热效果分析[J].低温与超导,2008,36(10):73-76. 被引量:7

二级参考文献19

共引文献55

同被引文献9

  • 1张景柳.CPU风扇散热器散热效果分析[D].南京:南京理工大学,2006.
  • 2李燚,张永恒.CPU散热器换热特性的数值研究[J].制冷与空调(四川),2007,21(4):98-100. 被引量:13
  • 3Reay D, Harvey A. The role of heat pipes in intensified unit operations[J]. Appl. Therm. Eng., 2013,57( 1 - 2) : 147 - 153.
  • 4Legierski J, Wiecek B, de Mey G. Measurements and simulations of transient characteristics of heat pipes[J]. Mieroelectron Reliab. , 2006,46( 1 ) : 109 - 115.
  • 5Gernert N J. Heat - pipe/heat - sink technology im- proves 6 - kw cooling [J]. Power Electron Technol. , 2009,35(10) :32 -34.
  • 6Xie X L, He Y L, Tao W Q, et al. An experimental in- vestigation on a novel high - performance integrated heat pipe - heat sink for high - flux chip cooling[J]. Appl. Therm. Eng. , 2008,28(5 -6) :433 -439.
  • 7Wang J C. 3 - D numerical and experimental models for flat and embedded heat pipes applied in high - end VGA card cooling system[J]. Int Commun Heat Mass Trans- fer, 2012,39(9) : 1360 - 1366.
  • 8张莹,诸凯.翅片中带有热管的散热器数值模拟和实验研究[J].低温与超导,2013,41(2):56-61. 被引量:5
  • 9徐先满,周蕾玲,操龙兵,陈由熹,杨磊.微型热管在CPU散热中的应用[J].低温与超导,2016,44(4):85-88. 被引量:7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部