期刊文献+

一种基于MI-Simba算法的香烟烟雾识别方法 被引量:2

A Recognition Approach for Cigarette Smoke Based on MI- Simba
下载PDF
导出
摘要 香烟烟雾对环境条件敏感以及多特征间存在冗余,都导致无法在视频监控中准确进行烟雾识别,因此提出一种高维互信息与Simba特征加权相结合的算法(MI-Simba).首先采用视频特征提取方法获取烟雾统计度量特征、颜色布局特征和动态特征,构建初始特征向量;然后利用MI-Simba算法进行自动更新,构建该环境下最优特征组合;最后采用直推式支持向量机进行分类识别.针对室内和楼宇内场景,自建封闭空间吸烟视频数据集,采用5倍交叉策略进行比较验证,实验结果验证该算法在识别率和灵敏度两方面的有效性和优越性. To overcome the uncertainty of smoke characteristics caused by the environment background, inhibit the redundancy between video smoke features, and improve the recognition rate simultaneously, a MI-Simba algorithm combining mutual information and simba for recognizing cigarette smoke in indoor videos is proposed. Firstly, the statistic feature, color layout feature and dynamic feature of cigarette smoke are obtained by the method of video feature extraction, and then the initial feature vector is established. Secondly, the feature vector is updated automatically by MI-Simba, and the optimal feature combination in this environment is established. Then a transductive support vector machine (TSVM) is used for classification and recognition. Finally, the recognition rate and sensitivity are computed on the self-buih video sequence database by 5-fold cross validation. The experimental results demonstrate the validity and superiority of the proposed algorithm compared with other algorithms.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第3期253-259,共7页 Pattern Recognition and Artificial Intelligence
基金 河北省自然科学基金项目(No.F2011203117)资助
关键词 多特征融合 互信息 直推式支持向量机(TSVM) 香烟烟雾识别 Multi-Feature Fusion, Mutual Information, Transductive Support Vector Machine (TSVM), Cigarette Smoke Recognition
  • 相关文献

参考文献13

  • 1Odetallah A D, Agaian S S. Human Visual System-Based Smoking Event Detection // Proc of SPIE 8406: The Mobile Multimedia / Image Processing, Security, and Applications. Baltimore, USA, 2012 : 4344-4347.
  • 2Bien T L, Lin C H. Detection and Recognition of Indoor Smoking Events//Proc of the 15th International Conference on Machine Vision. Wuhan, China, 2012. DOI:10. 1117/12.2020967.
  • 3Inoue H, Tanake T. Image-Based Smoke Detection with k-Subspaces Clustering//Proc of RISP International Workshop on Nonlinear Cir- cuits and Signal Processing. Ha:caii, USA, 2009:321-324.
  • 4Wu P, Hsieh J W, Cheng J C, et al. Human Smoking Event Detec- tion Using Visual Interaetion Clues//Proc of the 20th International Conference on Pattern Recognition. Istanbul, Turkey, 2010 : 4344- 4347.
  • 5Chang S F, Sikora T, Purl A. Overview of the MPEG-7 Standard. IEEE Trans on Circuits and Systems for Video Technology, 2001, 11(6) : 688-695.
  • 6Sikora T. The MPEG-7 Visual Standard for Content Description-An Overview. IEEE Trans on Circuits and Systems for Video Technology, 2001, 11(6) : 696-702.
  • 7王涛,刘渊,谢振平.一种基于飘动性分析的视频烟雾检测新方法[J].电子与信息学报,2011,33(5):1024-1029. 被引量:19
  • 8Yuan F N. A Fast Accumulative Motion Orientation Model Based on Integral Image for Video Smoke Detection. Pattern Recognition Lett- ers, 2008, 29(7) : 925-932.
  • 9Kira K, Rendell L A. A Practical Approach to Feature Selection// Proc of the 9th International Workshop on Machine Learning. Aber- deen, UK, 1992:249-256.
  • 10张翔,邓赵红,王士同,蔡及时.极大熵Relief特征加权[J].计算机研究与发展,2011,48(6):1038-1048. 被引量:9

二级参考文献42

  • 1邓赵红,王士同,吴锡生,胡德文.鲁棒的极大熵聚类算法RMEC及其例外点标识[J].中国工程科学,2004,6(9):38-45. 被引量:12
  • 2王冰,职秦川,张仲选,耿国华,周明全.灰度图像质心快速算法[J].计算机辅助设计与图形学学报,2004,16(10):1360-1365. 被引量:32
  • 3王熙照,安素芳.基于极大模糊熵原理的模糊产生式规则中的权重获取方法研究[J].计算机研究与发展,2006,43(4):673-678. 被引量:7
  • 4Liu H, Huang S T. Fuzzy Transductive Support Vector Machines for Hypertext Classification. International Journal of Uncertainty, Fuzziness Knowledge-Based Systems, 2004, 12 ( 1 ) : 21 - 36.
  • 5Vapnik V N. The Natural of Statistical Learning Theory. New York, USA : Springer-Verlag, 1995.
  • 6Joachims T. Transductive Inference for Text Classification Using Support Vector Machines// Proc of the 16th International Conference on Machine Learning. Bled, Slovenia, 1999 : 200 - 209.
  • 7Chapelle O, Chi M, Zien A. A Continuation Method for Semi-Supervised SVMs// Proc of the 23rd International Conference on Machine Learning. Pittsburgh, USA, 2006: 185-192.
  • 8Astorino A, Fuduli A. Nonsmooth Optimization Techniques for Semi-Supervised Classification. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2135-2142.
  • 9Tian Yingjie, Yan Manfu. Unconstrained Transduetive Support Vector Machines// Proc of the 4th Intemational Conference on Fuzzy System Knowledge Discovery. Haikou, China, 2007, Ⅱ: 181 - 185.
  • 10Silva M M, Maia T T, Braga A P. An Evolutionary Approach to Transduction in Support Vector Machines//Proc of the 5th International Conference on Hybrid Intelligence System. Kitakyushu, Japan, 2005 : 329 -334.

共引文献34

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部