期刊文献+

两类锥广义伪不变凸性的刻画

Characterizations of two classes of cone generalized pseudoinvexity
下载PDF
导出
摘要 研究了一类非光滑带约束的向量优化问题.首先引入锥意义下的FJ-伪不变凸Ⅰ(Ⅱ)型的概念;然后将经典的Gordan择一定理推广到了带锥的情形,并在此基础上利用FJ向量驻点与(弱)有效解间的关系,研究了锥FJ-伪不变凸Ⅰ(Ⅱ)型的等价刻画. In this paper,a class of nonsmooth vector optimization problem with constraints is considered.The concepts of FJ-pseudoinvexity-I(II) in the sense of cone are introduced;Gordan’s theorem over general cone domains is established;and then,FJ-pseudoinvexity-I(II) are characterized by the relationships between FJ vector critical points and the(weak) efficient solutions of nonsmooth vector optimization.
出处 《运筹学学报》 CSCD 北大核心 2015年第1期1-8,共8页 Operations Research Transactions
基金 国家自然科学基金重点项目(No.11431004) 国家自然科学基金(No.11271391)
关键词 向量优化 FJ-伪不变凸Ⅰ(Ⅱ)型 FJ向量驻点 (弱)有效解 vector optimization FJ-pseudoinvexity-I(II) FJ vector critical point (weak) efficient solution
  • 相关文献

参考文献10

  • 1Hanson M A. On sufficiency of the Kuhn-cker conditions [J]. Journal of Mathematical Anal- ysis and Applications, 1981, 80(2): 545-550.
  • 2Osuna R, Beato A, Rufian A. Generalized convexity in multiobjective programming [J]. Journal of Mathematical Analysis and Applications, 1999, 233: 205-220.
  • 3Arana M, Rufian A, Osuna R, et al. A characterization of pseudoinvexity in multiobjective programming [J]. Mathematical and Computer Modelling, 2008, 48: 1719-1723.
  • 4Arana M, Rufian A, Osuna R, et al. Pseudoinvexity, optimality conditions and efficiency in multiobjective problems, duality [J]. Nonlinear Analysis, 2008, 68: 24-34.
  • 5Arana M, Ruiz G, Rufian A, et al. A characterization of pseudoinvexity for the efficiency in nondifferentiable multiobjective problems, duality [J]. Nonlinear Analysis, 2010, 73: 1109-1117.
  • 6Arana M, Cambini R, Rufian A. C-efficiency in nondifferentiable vector optimization [J]. Math- ematical and computer Modelling, 2013, 57: 1148-1153.
  • 7Clarke F H. Optimization and Nonsmooth Analysis [M]. Philadelphia: Society for Industrial and Applied Mathematics, 1990.
  • 8Jahn J. Vector Optimization, Theory, Applications, and Extensions [M]. New York: Springer, 2011.
  • 9E1 Abdouni B, Thibault L. Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces [J]. Optimization, 1992, 26(3-4): 277-285.
  • 10Mishra S K, Wang S Y, Lai K K. Generalized Convexity and Vector Optimization [M]. Heidel- berg: Springer, 2009.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部