期刊文献+

求解带界约束的非线性方程组的混合方法

A hybrid method for a system of nonlinear equations with bound constraints
下载PDF
导出
摘要 基于非单调技术和L-M算法,提出了一种新的求解带界约束的非线性方程组的混合方法.在一定条件下,该算法具有全局收敛性.数值试验表明该算法是有效的. Based on the nonmonotone technique and the Levenberg-Marquard method,this paper presents a new hybrid method for solving a system of nonlinear equations with bound constraints.Under some reasonable assumptions,the proposed algorithm is proven to be globally convergent.Preliminary numerical results indicate that this algorithm is effective.
出处 《运筹学学报》 CSCD 北大核心 2015年第1期45-56,共12页 Operations Research Transactions
基金 国家自然科学基金(No.11261015) 海南省自然科学基金(No.111001)
关键词 非线性方程组 界约束 非单调技术 L-M算法 数值试验 nonlinear equations bound constraints nonmonotone technique LevenbergMarquard method numerical experiment
  • 相关文献

参考文献24

  • 1Ortega J M , Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables [M]. New York and London: Academic Press, 1970.
  • 2Nocedal J, Wright S J. Numerical Optimization [M]. New York: Springer, 1999.
  • 3Bellavia S, MMacconi M, Morini B. An affine scaling trust region approach to bound constrained nonlinear systems [J]. Applied Numerical Mathematics, 2003, 44: 257-280.
  • 4Monteiro R D C, Pang J S. A potential reduction Newton method for constrained equations, SIAM Journal on Optimization [J]. 1999, 9: 729-754.
  • 5Kozakevich D N, Martinez J M, Santos S A. Solving nonlinear system of equation with simple bounded constraints [J]. Journal of Computation and Applied Mathematics, 1997, 16: 215-235.
  • 6Wang C W, Wang Y J, Xu C L. A projection method for a system of nonlinear monotone equations with convex constraints [J]. Mathematical Methods of Operations Research, 2007, 66: 33-46.
  • 7Kanzow C, Yamashita N, Fukushima M. Levenberg-Marquardt methods for constrained non- linear equations with strong local convergence properties [J]. Journal of Computational and Applied Mathematics, 2004, 172: 375-397.
  • 8Yu Z S. On the global convergence of a levenberg-marquardt method for constrained nonlinear equation [J]. Journal of Applied Mathematics and computing, 2004, 16: 183-194.
  • 9Yu Z S, Lin J, Sun J, et al. Spectral gradient projection method for monotone nonlinear equations with convex constraints [J]. Applied Numerical Mathematics, 2009, 59: 2416-2423.
  • 10Xiao Y H , Zhu H. A conjugate gradient method to solve convex constrained monotone e- quations with applications in compressive sensing [J]. Journal of Mathematical Analysis and Applications. 2013, 405: 310-319.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部