期刊文献+

几何特征表达及基于几何特征的建筑物提取 被引量:9

Geometric Feature Representation and Building Extraction Based on Geometric Features
下载PDF
导出
摘要 通过分析高分辨率遥感图像中建筑物光谱特征存在严重的"同物异谱"和"同谱异物"等情况,发现建筑物的几何特征比其光谱特征更加典型.在总结了建筑物的一些典型几何特征之后,进行了基于几何特征(面积特征、矩形拟合度特征、长宽比特征、走向特征)的建筑物提取实验,发现利用几何特征能够比较有效地提取到建筑物.由于图像分割离不开光谱特征,即建筑物几何特征的计算受到其光谱特征的影响,依据几何特征的建筑物提取结果不是非常令人满意的.高度特征是建筑物最典型的几何特征之一,因此将高度特征引入到图像分割和建筑物提取过程是提高建筑物提取精度的新方向. Problems exist in building extraction from high-resolution remote sensing images in terms of spectral features. For example, the same object has different spectra and different objects have the same spectrum, and geometric features of a building may be more typical than its spectral features. Having summarized some typical geometric features of buildings, building extraction is done based on their geometric features with features of area, fitting rectangle, length-to-width ratio, and main directions. The experiment shows that extracting buildings with geometric features is more effective than with spectral features. However, since image segmentation depends on spectral features so that calculation of geometric features is affected by spectral features, building extraction based on geometric features is not satisfactory. As the height feature of a building is the most typical geometry features, introduction of height features into image segmentation and feature extraction is an effective way to improve accuracy of building extraction.
出处 《应用科学学报》 CAS CSCD 北大核心 2015年第1期9-20,共12页 Journal of Applied Sciences
基金 国家自然科学基金(No.41071274 No.61132006)资助
关键词 建筑物 几何特征 光谱特征 高度特征 提取 building geometry feature spectral feature height feature extraction
  • 相关文献

参考文献24

  • 1STANKOV K. Building detection in very high spatial resolution multispectral images using the hit-or-miss transform [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 86-90.
  • 2SAHIN Y, TEKE M, ERDEM A. Urban area and building detection on high resolution mul- tispectral satellite images using spatial statistics [C]//Signal Processing and Communications Applications Conference 2012: 1-4.
  • 3GRIGILLO D, FRAS M K. Classification based building detection from GeoEye-1 images [C]/ /Proceedings of the Joint Urban Remote Sensing Event, Munich, Germany, 2011: 381-384.
  • 4承德保.基于多特征组的遥感图像中建筑物目标自动识别与标绘的方法[J].电子与信息学报,2008,30(12):2867-2870. 被引量:3
  • 5FRADKIN M, MAITRE H, ROUX M. Building detection from multiple aeriM images in dense urban areas [Jl. Computer Vision and Image Understanding, 2001, 82(3): 181-207.
  • 6MULLER S, ZAUM D W. Robust building detection in aerial images [C]//Proceedings of the ISPRS Workshop CMRT, 2005: 29-30.
  • 7MAYER n. Automatic object extraction from aerial imagery: a survey focusing on buildings [J]. Computer Vision and Image Understanding, 1999, 74(2): 138-149.
  • 8Cui S, VAN Q, REINARTZ P. Complex building description and extraction based on Hough transformation and cycle detection [J]. Remote Sensing Letters, 2012,3(2): 151-159.
  • 9吴炜,骆剑承,沈占锋,朱志文.光谱和形状特征相结合的高分辨率遥感图像的建筑物提取方法[J].武汉大学学报(信息科学版),2012,37(7):800-805. 被引量:52
  • 10TANATHONG S, RUDAHL K T, COLDIN S E. Object oriented change detection of buildings after the Indian ocean tsunami disaster [C]//5th International Conference on Electrical Engineer- ing/Electronics, Computer, Telecommunications and Information Technology, 2008: 65-68.

二级参考文献42

共引文献119

同被引文献103

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部