期刊文献+

基于灰度投影变换的改进Mean-shift算法

Mean-shift algorithm with adjustive based on ray-scale projection transformation
下载PDF
导出
摘要 针对传统的均值漂移算法中核窗宽无法实时适应运动目标大小变化的问题,提出一种改进的Mean-shift跟踪算法。该算法通过对数坐标变换后的目标图像以及候选图像进行灰度投影计算,得到两幅图像的相对位移量,从而计算出窗口缩放因子,以便对核窗宽进行调整。实验证明,该算法可以有效地提高Mean-shift算法跟踪的准确性。 For the problem that bandwidth of the traditional target tracking algorithm based on Mean shift is unable to adapt to the size changes of moving targets in real time,an improved Mean shift tracking algorithm is proposed. This algorithm by calculating the gray-scale projection of the target image and the candidate image after their log-polar coordinate transformation obtains the relative displacement of the two images,and calculates the scale factor to adjust the bandwidth. The experimental results show that the proposed algorithm can improve the accuracy of Mean-shift tracking algorithm.
出处 《信息技术》 2015年第3期44-47,共4页 Information Technology
基金 上海市高校特聘教授(东方学者)岗位计划(51-11-302-301)
关键词 MEAN-SHIFT 灰度投影计算 核窗宽调整 目标跟踪算法 Mean-shift gray-scale projection calculation adjustive band width target tracking algorithm
  • 相关文献

参考文献4

二级参考文献35

  • 1杨旭,黄令仪,叶青,周玉梅.深亚微米设计中天线效应的消除[J].Journal of Semiconductors,2004,25(7):879-883. 被引量:6
  • 2李博,王孝通,杨常青,金良安.电子稳像的灰度投影三点局域自适应搜索算法[J].光电工程,2004,31(9):69-72. 被引量:20
  • 3杨依忠,胡永华,尹勇生,曹华锋.PC和SE有效结合的一种设计新方法[J].微电子学与计算机,2004,21(6):182-184. 被引量:1
  • 4吴伟贤,周剑扬,许伟坚,陈辉煌.基于硅虚拟原型的RISC CPU核物理设计[J].微电子学与计算机,2005,22(3):162-165. 被引量:3
  • 5[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 6[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 7[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 8[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 9[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 10[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.

共引文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部