期刊文献+

环F_q+uF_q+u^2F_q+…+u^(k-1)F_q上线性码的覆盖半径

Covering radius of linear codes over ring F_q+uF_q+u^2F_q+…+u^(k-1)F_q
下载PDF
导出
摘要 文章研究了有限链环R=Fq+uFq+u2Fq+…+uk-1Fq上长为n的线性码关于齐次距离的覆盖半径,其中uk=0,q为某一素数幂。构造了环R上的广义Gray映射,得到了R上线性码关于覆盖半径的相关性质,并研究了环R上线性码覆盖半径的上下界。 In this paper,the covering radius of linear codes over R=Fq+uFq+u2Fq+…+uk-1Fq with length nabout homogeneous distance is studied,where uk=0,qis a power of prime.Some properties of linear codes over Rabout homogeneous distance are obtained by generalized Gray map.The upper and lower bounds of covering radius of linear codes over Rabout homogeneous distance are also studied.
作者 钟家伟 李平
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期424-427,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61370089) 中央高校基本科研业务费专项资金资助项目(J2014HGXJ0073) 合肥工业大学博士学位人员专项基金资助项目(JZ2014HGBZ0029)
关键词 线性码 齐次距离 齐次重量 GRAY映射 覆盖半径 linear code homogeneous distance homogeneous weight Gray map covering radius
  • 相关文献

参考文献1

二级参考文献15

  • 1余海峰,朱士信.环F_2+uF_2上线性码及其对偶码的Mac Williams恒等式[J].中国科学技术大学学报,2006,36(12):1285-1288. 被引量:17
  • 2李平,朱士信.环F2+uF2上长为2^e的循环码[J].电子与信息学报,2007,29(5):1124-1126. 被引量:16
  • 3Bonnecaze A, Udaya P. Cyclic codes and self-dual codes over F2 +uF2 [J]. IEEE Trans Inform Theory, 1999,45(4): 1 250-1 255.
  • 4Udaya P, Bonnecaze A. Decoding of cyclic codes over F2 +uF2 [J]. IEEE Trans Inform Theory, 1999, 45 (6): 2 148-2 157.
  • 5Dougherty S T, Gaborit P, Harada M, et al. Type Ⅱ codes over F2 +uF2 [J]. IEEE Trans Inform Theory, 1999, 45(1) : 32-45.
  • 6Zhu Shi-xin. Research on error-correcting codes and sequences ciphers over finite rings in information theory [D]. Hdei: Hefei University of Technology, School of Science, 2005.
  • 7Ling S, Sole P. Duadic codes over F2 +uF2 [J]. Appl Algebra in Engineering, Communication and Computing, 2001,12(5) : 365-379.
  • 8Baicheva T, Vavrek V. On the least covering radius of binary linear codes with small lengths[[J]. IEEE Trans Inform Theory, 2003, 49(3) : 738-740.
  • 9Harada M, Ozeki M. Extremal self-dual codes with the smallest covering radius [J]. Discrete Mathematics, 2000, 215(1): 271-281.
  • 10Aoki T, Gaborit P, Harada M, et al. On the covering radius of Z4-eodes and their lattices[J]. IEEE Trans Inform Theory, 1999,45(6): 2 162-2 168.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部