摘要
The seasonal variability in the surface energy exchange of an alpine grassland on the eastern Qinghai- Tibetan Plateau was investigated using eddy covariance measurements. Based on the change of air temperature and the seasonal distribution of precipitation, a winter season and wet season were identified, which were separated by transitional periods. The annual mean net radiation (Rn) was about 39 % of the annual mean solar radiation (Rs). Rn was relatively low during the winter season (21% of Rs) compared with the wet season (54 % of Rs), which can be explained by the difference in surface albedo and moisture condition between the two seasons. Annually, the main consumer of net radiation was latent heat flux (LE). During the winter season, sensible heat flux (H) was dominant because of the frozen soil condition and lack of precipita- tion. During the wet season, LE expended 66 % of Rn due to relatively high temperature and sufficient rainfall cou- pled with vegetation growth. Leaf area index (LAI) had important influence on energy partitioning during wet season. The high LAI due to high soil water content (θv) contributed to high surface conductance (go) and LE, and thus low Bowen ratio (β). LE was strongly controlled by Rn from June to August when gc and θv were high. During the transitional periods, H and LE were nearly equally parti- tioned in the energy balance. The results also suggested that the freeze-thaw condition of soil and the seasonal distribution of precipitation had important impacts on the energy exchange in this alpine grassland.
青藏高原是世界上面积最大、海拔最高的高原,其独特的地形地貌特征对东亚乃至全球大气环流有重要影响.由于地表特征不同,高原不同区域地表热力特征也有显著差异.高原的东部边缘地表、植被和气象特征与高原其他区域明显不同,因此这一区域地表热力作用也与高原其他区域不同.本文研究了青藏高原东部玛曲草原地表能量交换的季节变化特征.玛曲草原冬季净辐射占入射太阳辐射的比例小于雨季,其差异主要由2个季节的地表反照率和湿度状况的差异引起.全年来看,净辐射大部分用水汽蒸发所需的热量.冬季由于土壤冻结加之降水稀少,净辐射主要用于加热地表和大气.雨季由于相对较高的气温、充足的降水及植被茂盛的生长力,净辐射主要用于水汽蒸发.在这一区域,降水的季节分布以及土壤的冻融状况对地表能量分配有重要影响.
基金
supported by the National Basic Research Program of China(2010CB951701,2011CB952002)
the National Natural Science Foundation of China(41205006,41275016)
the Foundation for Excellent Youth Scholars of CAREERI,Chinese Academy of Sciences