期刊文献+

基于遗传算法优化BP神经网络的瓦斯浓度预测研究 被引量:43

Study of Gas Concentration Prediction Based on Genetic Algorithm and Optimizing BP Neural Network
下载PDF
导出
摘要 为了提高瓦斯浓度预测的精度和稳定性,提出了将遗传算法(GA)与BP神经网络结合的预测方法。利用BP神经网络能以任意精度逼近非线性函数的优点,结合遗传算法的全局搜索能力,优化神经网络权值和阈值,建立GA—BP混合算法模型预测瓦斯浓度。实验结果表明,GA—BP算法与BP神经网络相比,具有较高的预测精度和较强的稳定性。 In order to improve the accuracy and stability of the gas concentration prediction, a prediction method of combining genetic algorithm ( GA) and BP neural network was proposed. By using the advantage of BP neural network which can approach the nonlinear function with any accuracy, combining with the overall search ability of the genetic algorithm and optimizing the neural network weights and thresholds, a GA-BP hybrid algorithm model for gas concentration prediction was established. The experimental results show that GA-BP algorithm has higher prediction accuracy and stronger stability as compared with the BP neural network.
出处 《矿业安全与环保》 北大核心 2015年第2期56-60,共5页 Mining Safety & Environmental Protection
关键词 瓦斯浓度 BP神经网络 遗传算法 预测 gas concentration BP neural network genetic algorithms prediction
  • 相关文献

参考文献7

二级参考文献39

共引文献168

同被引文献477

引证文献43

二级引证文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部