期刊文献+

基于可变形部件模型的车牌检测 被引量:1

Plate Detection Based on Deformable Part Model
下载PDF
导出
摘要 针对传统的利用车牌先验信息后检测的方法受背景、分辨率、光照和车辆姿态影响较大的问题,提出了一种基于可变形部件模型的车牌检测方法。该方法首先提取车牌样本的HOG特征,分别获取根滤波器模型和部件滤波器模型,融合后得到最终的检测模型;然后计算待检测图像的HOG特征,用检测模型分别计算根滤波器的得分和部件部件滤波器的得分;最后将根滤波器的得分与进行距离变换之后的部件滤波器的得分相加,根据相加后的结果确定车牌的真实位置。实验结果表明,该方法能够准确检测出车牌位置,能应用于各种复杂背景、低分辨率、恶劣光照和任意车辆姿态的环境中,具有一定的实用价值。 While the traditional plate detection methods based on the license plates' prior information are greatly influenced bythe background, resolution, light and vehicle attitudes, a license plate detection method based on deformable part model is presented.First, the method extracted the license plates' HOG features, and used the features to train a root filter and several part filters, and thengot a detection model. Second, the method calculated the HOG features of images to be detected, and used the detection model to calculatethe root filter's score and the part filters' score separately; Finally, the method processed the part filters' score based on distancetransform, and then added to the root filter's score, and the real plate position was gained based on the final score. The experimental resultsshow that the method can accurately gain the license plate's location, and can be applied to various scenarios such as complexbackground, low resolution, bad light and any vehicle attitudes, so the method has a certain practical value.
作者 钱月晶
出处 《浙江工贸职业技术学院学报》 2015年第1期38-42,共5页 Journal of Zhejiang Industry & Trade Vocational College
关键词 车牌检测 可变形部件模型 HOG特征 plate detection deformable part model HOG features
  • 相关文献

参考文献9

  • 1薄树奎,孙新德,丁琳.一种基于彩色图像分割的车牌检测方法[J].计算机科学,2009,36(4):261-263. 被引量:8
  • 2Fong A C M, Hui S C. An intelligent online machine fault diagnosis system[J]. Computing & Control Engineering Journal, 2001, 12(5):217-223.
  • 3Hui S C, Fong A C M, Jha G. A web-based intelligent fault diagnosis system for customer service support[J]. Engineering Applica.tions of Artificial Intelligence, 2001, 14(4): 537-548.
  • 4Marzi R, John P. Supporting fault diagnosis through a multi-agent-architecture[J]. Mathematics and computers in simulation, 2002, 60(3): 217-224.
  • 5Hossack J A, Menal J, McArthur S D J, et al. A multiagent architecture for protection engineering diagnostic assistance[J]. Power Sys.tems, IEEE Transactions on, 2003, 18(2): 639-647.
  • 6Liu Y, Miao D, Peng Y, et al. Remote fault diagnosis based on virtual instrument technology[C]//Computer Supported CooperativeWork in Design, 2006. CSCWD'06. 10th International Conference on. IEEE, 2006: 1-5.
  • 7N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, in IEEE Conference on Computer Vision and PatternRecognition, 2005.1:886-893.
  • 8P.Felzenszwalb, D.McAllester, and D.Ramanan. A discriminatively trained,multiscale, deformable part model, in IEEE Conferenceon Computer Vision and Pattern Recognition,2008.1:1-8.
  • 9Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models[J]. PatternAnalysis and Machine Intelligence,IEEE Transactions on, 2010,32(9): 1627-164.

二级参考文献7

  • 1李刚,曾锐利,林凌,王蒙军.基于数学形态学的车牌定位算法[J].仪器仪表学报,2007,28(7):1323-1327. 被引量:67
  • 2Shapiro V, Gluhchev G, Dimov D. Towards a Multinational Car License Plate Recognition System [J]. Machine Vision and Applications, 2006,17(3) : 173-183
  • 3Jia X H W, Zhang H, Piccardi M. Mean Shift for Accurate License Plate Localization [A]//Proceed ings of the IEEE Conference on Intelligent Transport ation Systems [C]. Vienna, Austria. 2005:566 571
  • 4Matas J, Zimmermann K. Unconstrained License Plate and Text Localization and Recognition [A]// Proceedings of the IEEE Conference on Intelligent Transportation Systems [C]. Vienna, Austria. 2005 : 572-577
  • 5Baatz M, Shpe A. Multiresolution Segmentation, An Optimization Approach for High Quality Multi-scale Image Segmentation [A]//Strobl, Blaschke & Greisebener, eds. Angewandte Geogra-phische Informationsverarbeitung XII. Beitrage zum AGIT-Symposium Salzburg 1999 [C]. Karlsruhe. Herbert Wichmann Verlag, 2000 : 12-23
  • 6曾丽华,李超,熊璋.基于边缘与颜色信息的车牌精确定位算法[J].北京航空航天大学学报,2007,33(9):1112-1116. 被引量:21
  • 7吴舟舟,李树广.基于分级边缘间距的实时车牌检测[J].中国图象图形学报,2007,12(2):315-321. 被引量:20

共引文献7

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部