期刊文献+

基于多项式模型的TLS激光强度值改正 被引量:16

TLS Laser Intensity Correction Based on Polynomial Model
原文传递
导出
摘要 从激光雷达测距方程出发,根据扫描仪的辐射机制,运用多项式模型拟合激光强度值与接收功率之间的关系。由于系统参数与目标反射率未知,接收功率无法获取,所以通过激光入射角的余弦与激光测距值平方的组合,构造新变量,实现目标反射率与扫描几何因素的分离,根据多项式模型建立激光强度值与新变量之间的模型关系。定义了标准测距值与标准入射角,分析残差特性,对激光强度中的距离和入射角效应进行改正。通过实验进行验证分析。实验结果表明:该方法能有效地去除由距离和入射角引起的强度偏差,精确地对激光强度值进行改正。 Starting from the laser radar range equation, the polynomial model is adopted to fit the relationship between the laser intensity value and the received power based on the instrumental radiometric mechanism.Because of the unknown system parameters and target reflectance, it is impossible to compute the definite received laser power. So, by constructing the new variable constituted by the combination of the cosine of the incidence angle and the square of the range, the scanning geometry factors and target reflectance are separated and the polynomial model is used to fit the relationship between the laser intensity and the new variable. The standard range and the standard incidence angle are defined, and the intensity biases caused by the range and the incidence angle are corrected by analyzing. Experiments are conducted to test and verify the proposed method. Results show that the method can effectively remove the variations and biases caused by the range and incidence angle as well as accurately obtain the corrected laser intensity value proportional to the reflectance of the scanned point.
作者 谭凯 程效军
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第3期302-310,共9页 Chinese Journal of Lasers
基金 "十二五"国家科技支撑计划(2013BAK08B07)
关键词 遥感 激光强度 激光测距值 激光入射角 激光雷达测距方程 多项式模型 remote sensing laser intensity laser range value laser incidence angle laser radar range equation polynomial model
  • 相关文献

参考文献20

  • 1Pfeifer N, Hofle B, Briese C, et al.. Analysis of the backscattered energy in terrestrial laser scanning data[J]. Int Arch PhotogrammRemote Sens Spat Inf Sci, 2008, 37: 1045-1052.
  • 2H6fle B, Pfeifer N. Correction of laser scanning intensity data: Data and model-driven approaches[J]. ISPRS Journal of Photogrammetryand Remote Sensing. 2007, 62(6): 415-433.
  • 3Pfeifer N, Dorninger P, Haring A, et al” Investigating terrestrial laser scanning intensity data: quality and functional relations[C].Proceedings of the VIII Conference on Optical 3D Measurement Technology, 2007: 328-337.
  • 4Oh D. Radiometric correction of mobile laser scanning intensity data[J]. International Institute for Geo- information Science andEarth Observation, Enchede Netherlands Master of Science thesis in Geo-information Science and Earth Observation, 2010.
  • 5Yan W Y, Shaker A., Habib A, et al.. Improving classification accuracy of airborne LiDAR intensity data by geometric calibrationand radiometric correctionfj]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,67: 35-44.
  • 6Coren F, Sterzai P. Radiometric correction in laser scanning[J]. International Journal of Remote Sensing, 2006, 27(15): 3097-3104.
  • 7Ding Q, Chen W, King B, et al.. Combination of overlap- driven adjustment and Phong model for LiDAR intensity correction[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75: 40-47.
  • 8Jutzi B, Gross H. Normalization of LiDAR intensity data based on range and surface incidence angle[J]. Int Arch PhogogrammRemote Sens Spat Inf Sci, 2009, 38: 213-218.
  • 9Errington AFC, Daku B L F, Prugger A F. A model based approach to intensity normalization for terrestrial laser scanners[C].SPIE,2011:828605.
  • 10Cheng X J, Tan K, Lou Q Y. Relations of the laser intensity value, the laser ranging value and the laser incident angle[J]. AppliedMechanics and Materials, 2013, 239: 198-201.

二级参考文献22

  • 1刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版),2005,30(3):189-193. 被引量:65
  • 2Vosselman G, Dijkman S. 3D Building Reconstruction from Points Clouds and Ground Plans[J]. International Archives of Photogrammetry and Remote Sensing,2001, 34(3W4) : 37-43.
  • 3Manandhar D, Shibaski R. Auto-Extraction of Urban Features from Vehicle-Borne Laser Data[C]. Symposium on Geospatial Theory, Processing and Applications, Ottawa, 2002.
  • 4Rottensteiner F, Briese C. A New Method for Building Extraction in Urban Areas from High-resolution LIDAR Data[J]. International Archives of Photogrammetry and Remote Sensing, 2002 (3A) :295-301.
  • 5Rottensteiner F, Briese C. Automatic Generation of Building Models from LIDAR Data and the Integration of Aerial Images[J]. International Archives of Photogrammetry and Remote Sensing, 2003, 34 (3W13):174-180.
  • 6Haala N, Brenner C. Generation of 3D City Models from Airborne Laser Scanning Data. EARSEL Workshop on LIDAR Remote Sensing on Land and Area, Tallinn/Estonia, 1997.
  • 7Haala N, Brenner C. Extraction of Building and Trees in Urban Environments. ISPRS Journal of Photogrammetry and Remote Sensing, 1999,54(2/3):130~137.
  • 8Lemmens M, Deijkers H, Looman P. Building Detection by Fusion Airborne Laser-Altimeter DEMs and 2D Digital Maps. International Archives of Photogrammetry and Remote Sensing, 1997, 32(3/4W2):42~49.
  • 9Maas H G, Vosselman G. Two Algorithms for Extracting Building Models from Raw Laser Altimetry Data. ISPRS Journal of Photogrammetry and Remote Sensing, 1999,54(2/3):245~261.
  • 10Haala N, Brenner C, Statter C. An Integrated System for Urban Model Generation. International Archives of Photogrammetry and Remote Sensing, Amsterdam, 1998.

共引文献95

同被引文献119

引证文献16

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部